const std = @import("std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const assert = debug.assert;
const math = std.math;
const mem = @This();
const meta = std.meta;
const trait = meta.trait;
const testing = std.testing;
const Endian = std.builtin.Endian;
const native_endian = builtin.cpu.arch.endian();

/// Compile time known minimum page size.
/// https://github.com/ziglang/zig/issues/4082
pub const page_size = switch (builtin.cpu.arch) {
    .wasm32, .wasm64 => 64 * 1024,
    .aarch64 => switch (builtin.os.tag) {
        .macos, .ios, .watchos, .tvos => 16 * 1024,
        else => 4 * 1024,
    },
    .sparc64 => 8 * 1024,
    else => 4 * 1024,
};

/// The standard library currently thoroughly depends on byte size
/// being 8 bits.  (see the use of u8 throughout allocation code as
/// the "byte" type.)  Code which depends on this can reference this
/// declaration.  If we ever try to port the standard library to a
/// non-8-bit-byte platform, this will allow us to search for things
/// which need to be updated.
pub const byte_size_in_bits = 8;

pub const Allocator = @import("mem/Allocator.zig");

/// Detects and asserts if the std.mem.Allocator interface is violated by the caller
/// or the allocator.
pub fn ValidationAllocator(comptime T: type) type {
    return struct {
        const Self = @This();

        underlying_allocator: T,

        pub fn init(underlying_allocator: T) @This() {
            return .{
                .underlying_allocator = underlying_allocator,
            };
        }

        pub fn allocator(self: *Self) Allocator {
            return .{
                .ptr = self,
                .vtable = &.{
                    .alloc = alloc,
                    .resize = resize,
                    .free = free,
                },
            };
        }

        fn getUnderlyingAllocatorPtr(self: *Self) Allocator {
            if (T == Allocator) return self.underlying_allocator;
            return self.underlying_allocator.allocator();
        }

        pub fn alloc(
            ctx: *anyopaque,
            n: usize,
            log2_ptr_align: u8,
            ret_addr: usize,
        ) ?[*]u8 {
            assert(n > 0);
            const self = @ptrCast(*Self, @alignCast(@alignOf(Self), ctx));
            const underlying = self.getUnderlyingAllocatorPtr();
            const result = underlying.rawAlloc(n, log2_ptr_align, ret_addr) orelse
                return null;
            assert(mem.isAlignedLog2(@ptrToInt(result), log2_ptr_align));
            return result;
        }

        pub fn resize(
            ctx: *anyopaque,
            buf: []u8,
            log2_buf_align: u8,
            new_len: usize,
            ret_addr: usize,
        ) bool {
            const self = @ptrCast(*Self, @alignCast(@alignOf(Self), ctx));
            assert(buf.len > 0);
            const underlying = self.getUnderlyingAllocatorPtr();
            return underlying.rawResize(buf, log2_buf_align, new_len, ret_addr);
        }

        pub fn free(
            ctx: *anyopaque,
            buf: []u8,
            log2_buf_align: u8,
            ret_addr: usize,
        ) void {
            _ = ctx;
            _ = log2_buf_align;
            _ = ret_addr;
            assert(buf.len > 0);
        }

        pub fn reset(self: *Self) void {
            self.underlying_allocator.reset();
        }
    };
}

pub fn validationWrap(allocator: anytype) ValidationAllocator(@TypeOf(allocator)) {
    return ValidationAllocator(@TypeOf(allocator)).init(allocator);
}

/// An allocator helper function.  Adjusts an allocation length satisfy `len_align`.
/// `full_len` should be the full capacity of the allocation which may be greater
/// than the `len` that was requsted.  This function should only be used by allocators
/// that are unaffected by `len_align`.
pub fn alignAllocLen(full_len: usize, alloc_len: usize, len_align: u29) usize {
    assert(alloc_len > 0);
    assert(alloc_len >= len_align);
    assert(full_len >= alloc_len);
    if (len_align == 0)
        return alloc_len;
    const adjusted = alignBackwardAnyAlign(full_len, len_align);
    assert(adjusted >= alloc_len);
    return adjusted;
}

const fail_allocator = Allocator{
    .ptr = undefined,
    .vtable = &failAllocator_vtable,
};

const failAllocator_vtable = Allocator.VTable{
    .alloc = failAllocatorAlloc,
    .resize = Allocator.noResize,
    .free = Allocator.noFree,
};

fn failAllocatorAlloc(_: *anyopaque, n: usize, log2_alignment: u8, ra: usize) ?[*]u8 {
    _ = n;
    _ = log2_alignment;
    _ = ra;
    return null;
}

test "Allocator basics" {
    try testing.expectError(error.OutOfMemory, fail_allocator.alloc(u8, 1));
    try testing.expectError(error.OutOfMemory, fail_allocator.allocSentinel(u8, 1, 0));
}

test "Allocator.resize" {
    const primitiveIntTypes = .{
        i8,
        u8,
        i16,
        u16,
        i32,
        u32,
        i64,
        u64,
        i128,
        u128,
        isize,
        usize,
    };
    inline for (primitiveIntTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);

        for (values, 0..) |*v, i| v.* = @intCast(T, i);
        if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory;
        values = values.ptr[0 .. values.len + 10];
        try testing.expect(values.len == 110);
    }

    const primitiveFloatTypes = .{
        f16,
        f32,
        f64,
        f128,
    };
    inline for (primitiveFloatTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);

        for (values, 0..) |*v, i| v.* = @intToFloat(T, i);
        if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory;
        values = values.ptr[0 .. values.len + 10];
        try testing.expect(values.len == 110);
    }
}

/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
/// If the slices overlap, dest.ptr must be <= src.ptr.
pub fn copy(comptime T: type, dest: []T, source: []const T) void {
    for (dest[0..source.len], source) |*d, s|
        d.* = s;
}

/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
/// If the slices overlap, dest.ptr must be >= src.ptr.
pub fn copyBackwards(comptime T: type, dest: []T, source: []const T) void {
    // TODO instead of manually doing this check for the whole array

    // and turning off runtime safety, the compiler should detect loops like

    // this and automatically omit safety checks for loops

    @setRuntimeSafety(false);
    assert(dest.len >= source.len);
    var i = source.len;
    while (i > 0) {
        i -= 1;
        dest[i] = source[i];
    }
}

/// Sets all elements of `dest` to `value`.
pub fn set(comptime T: type, dest: []T, value: T) void {
    for (dest) |*d|
        d.* = value;
}

/// Generally, Zig users are encouraged to explicitly initialize all fields of a struct explicitly rather than using this function.
/// However, it is recognized that there are sometimes use cases for initializing all fields to a "zero" value. For example, when
/// interfacing with a C API where this practice is more common and relied upon. If you are performing code review and see this
/// function used, examine closely - it may be a code smell.
/// Zero initializes the type.
/// This can be used to zero-initialize any type for which it makes sense. Structs will be initialized recursively.
pub fn zeroes(comptime T: type) T {
    switch (@typeInfo(T)) {
        .ComptimeInt, .Int, .ComptimeFloat, .Float => {
            return @as(T, 0);
        },
        .Enum, .EnumLiteral => {
            return @intToEnum(T, 0);
        },
        .Void => {
            return {};
        },
        .Bool => {
            return false;
        },
        .Optional, .Null => {
            return null;
        },
        .Struct => |struct_info| {
            if (@sizeOf(T) == 0) return undefined;
            if (struct_info.layout == .Extern) {
                var item: T = undefined;
                set(u8, asBytes(&item), 0);
                return item;
            } else {
                var structure: T = undefined;
                inline for (struct_info.fields) |field| {
                    if (!field.is_comptime) {
                        @field(structure, field.name) = zeroes(@TypeOf(@field(structure, field.name)));
                    }
                }
                return structure;
            }
        },
        .Pointer => |ptr_info| {
            switch (ptr_info.size) {
                .Slice => {
                    if (ptr_info.sentinel) |sentinel| {
                        if (ptr_info.child == u8 and @ptrCast(*const u8, sentinel).* == 0) {
                            return ""; // A special case for the most common use-case: null-terminated strings.

                        }
                        @compileError("Can't set a sentinel slice to zero. This would require allocating memory.");
                    } else {
                        return &[_]ptr_info.child{};
                    }
                },
                .C => {
                    return null;
                },
                .One, .Many => {
                    @compileError("Can't set a non nullable pointer to zero.");
                },
            }
        },
        .Array => |info| {
            if (info.sentinel) |sentinel_ptr| {
                const sentinel = @ptrCast(*align(1) const info.child, sentinel_ptr).*;
                return [_:sentinel]info.child{zeroes(info.child)} ** info.len;
            }
            return [_]info.child{zeroes(info.child)} ** info.len;
        },
        .Vector => |info| {
            return @splat(info.len, zeroes(info.child));
        },
        .Union => |info| {
            if (comptime meta.containerLayout(T) == .Extern) {
                // The C language specification states that (global) unions

                // should be zero initialized to the first named member.

                return @unionInit(T, info.fields[0].name, zeroes(info.fields[0].type));
            }

            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
        .ErrorUnion,
        .ErrorSet,
        .Fn,
        .Type,
        .NoReturn,
        .Undefined,
        .Opaque,
        .Frame,
        .AnyFrame,
        => {
            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
    }
}

test "zeroes" {
    if (builtin.zig_backend == .stage2_llvm) {
        // Regressed in LLVM 14:

        // https://github.com/llvm/llvm-project/issues/55522

        return error.SkipZigTest;
    }

    const C_struct = extern struct {
        x: u32,
        y: u32,
    };

    var a = zeroes(C_struct);
    a.y += 10;

    try testing.expect(a.x == 0);
    try testing.expect(a.y == 10);

    const ZigStruct = struct {
        comptime comptime_field: u8 = 5,

        integral_types: struct {
            integer_0: i0,
            integer_8: i8,
            integer_16: i16,
            integer_32: i32,
            integer_64: i64,
            integer_128: i128,
            unsigned_0: u0,
            unsigned_8: u8,
            unsigned_16: u16,
            unsigned_32: u32,
            unsigned_64: u64,
            unsigned_128: u128,

            float_32: f32,
            float_64: f64,
        },

        pointers: struct {
            optional: ?*u8,
            c_pointer: [*c]u8,
            slice: []u8,
            nullTerminatedString: [:0]const u8,
        },

        array: [2]u32,
        vector_u32: @Vector(2, u32),
        vector_f32: @Vector(2, f32),
        vector_bool: @Vector(2, bool),
        optional_int: ?u8,
        empty: void,
        sentinel: [3:0]u8,
    };

    const b = zeroes(ZigStruct);
    try testing.expectEqual(@as(u8, 5), b.comptime_field);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_0);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_8);
    try testing.expectEqual(@as(i16, 0), b.integral_types.integer_16);
    try testing.expectEqual(@as(i32, 0), b.integral_types.integer_32);
    try testing.expectEqual(@as(i64, 0), b.integral_types.integer_64);
    try testing.expectEqual(@as(i128, 0), b.integral_types.integer_128);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_0);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_8);
    try testing.expectEqual(@as(u16, 0), b.integral_types.unsigned_16);
    try testing.expectEqual(@as(u32, 0), b.integral_types.unsigned_32);
    try testing.expectEqual(@as(u64, 0), b.integral_types.unsigned_64);
    try testing.expectEqual(@as(u128, 0), b.integral_types.unsigned_128);
    try testing.expectEqual(@as(f32, 0), b.integral_types.float_32);
    try testing.expectEqual(@as(f64, 0), b.integral_types.float_64);
    try testing.expectEqual(@as(?*u8, null), b.pointers.optional);
    try testing.expectEqual(@as([*c]u8, null), b.pointers.c_pointer);
    try testing.expectEqual(@as([]u8, &[_]u8{}), b.pointers.slice);
    try testing.expectEqual(@as([:0]const u8, ""), b.pointers.nullTerminatedString);
    for (b.array) |e| {
        try testing.expectEqual(@as(u32, 0), e);
    }
    try testing.expectEqual(@splat(2, @as(u32, 0)), b.vector_u32);
    try testing.expectEqual(@splat(2, @as(f32, 0.0)), b.vector_f32);
    try testing.expectEqual(@splat(2, @as(bool, false)), b.vector_bool);
    try testing.expectEqual(@as(?u8, null), b.optional_int);
    for (b.sentinel) |e| {
        try testing.expectEqual(@as(u8, 0), e);
    }

    const C_union = extern union {
        a: u8,
        b: u32,
    };

    var c = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), c.a);

    comptime var comptime_union = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), comptime_union.a);

    // Ensure zero sized struct with fields is initialized correctly.

    _ = zeroes(struct { handle: void });
}

/// Initializes all fields of the struct with their default value, or zero values if no default value is present.
/// If the field is present in the provided initial values, it will have that value instead.
/// Structs are initialized recursively.
pub fn zeroInit(comptime T: type, init: anytype) T {
    const Init = @TypeOf(init);

    switch (@typeInfo(T)) {
        .Struct => |struct_info| {
            switch (@typeInfo(Init)) {
                .Struct => |init_info| {
                    if (init_info.is_tuple) {
                        if (init_info.fields.len > struct_info.fields.len) {
                            @compileError("Tuple initializer has more elments than there are fields in `" ++ @typeName(T) ++ "`");
                        }
                    } else {
                        inline for (init_info.fields) |field| {
                            if (!@hasField(T, field.name)) {
                                @compileError("Encountered an initializer for `" ++ field.name ++ "`, but it is not a field of " ++ @typeName(T));
                            }
                        }
                    }

                    var value: T = undefined;

                    inline for (struct_info.fields, 0..) |field, i| {
                        if (field.is_comptime) {
                            continue;
                        }

                        if (init_info.is_tuple and init_info.fields.len > i) {
                            @field(value, field.name) = @field(init, init_info.fields[i].name);
                        } else if (@hasField(@TypeOf(init), field.name)) {
                            switch (@typeInfo(field.type)) {
                                .Struct => {
                                    @field(value, field.name) = zeroInit(field.type, @field(init, field.name));
                                },
                                else => {
                                    @field(value, field.name) = @field(init, field.name);
                                },
                            }
                        } else if (field.default_value) |default_value_ptr| {
                            const default_value = @ptrCast(*align(1) const field.type, default_value_ptr).*;
                            @field(value, field.name) = default_value;
                        } else {
                            switch (@typeInfo(field.type)) {
                                .Struct => {
                                    @field(value, field.name) = std.mem.zeroInit(field.type, .{});
                                },
                                else => {
                                    @field(value, field.name) = std.mem.zeroes(@TypeOf(@field(value, field.name)));
                                },
                            }
                        }
                    }

                    return value;
                },
                else => {
                    @compileError("The initializer must be a struct");
                },
            }
        },
        else => {
            @compileError("Can't default init a " ++ @typeName(T));
        },
    }
}

test "zeroInit" {
    const I = struct {
        d: f64,
    };

    const S = struct {
        a: u32,
        b: ?bool,
        c: I,
        e: [3]u8,
        f: i64 = -1,
    };

    const s = zeroInit(S, .{
        .a = 42,
    });

    try testing.expectEqual(S{
        .a = 42,
        .b = null,
        .c = .{
            .d = 0,
        },
        .e = [3]u8{ 0, 0, 0 },
        .f = -1,
    }, s);

    const Color = struct {
        r: u8,
        g: u8,
        b: u8,
        a: u8,
    };

    const c = zeroInit(Color, .{ 255, 255 });
    try testing.expectEqual(Color{
        .r = 255,
        .g = 255,
        .b = 0,
        .a = 0,
    }, c);

    const Foo = struct {
        foo: u8 = 69,
        bar: u8,
    };

    const f = zeroInit(Foo, .{});
    try testing.expectEqual(Foo{
        .foo = 69,
        .bar = 0,
    }, f);

    const Bar = struct {
        foo: u32 = 666,
        bar: u32 = 420,
    };

    const b = zeroInit(Bar, .{69});
    try testing.expectEqual(Bar{
        .foo = 69,
        .bar = 420,
    }, b);

    const Baz = struct {
        foo: [:0]const u8 = "bar",
    };

    const baz1 = zeroInit(Baz, .{});
    try testing.expectEqual(Baz{}, baz1);

    const baz2 = zeroInit(Baz, .{ .foo = "zab" });
    try testing.expectEqualSlices(u8, "zab", baz2.foo);

    const NestedBaz = struct {
        bbb: Baz,
    };
    const nested_baz = zeroInit(NestedBaz, .{});
    try testing.expectEqual(NestedBaz{
        .bbb = Baz{},
    }, nested_baz);
}

/// Compares two slices of numbers lexicographically. O(n).
pub fn order(comptime T: type, lhs: []const T, rhs: []const T) math.Order {
    const n = math.min(lhs.len, rhs.len);
    var i: usize = 0;
    while (i < n) : (i += 1) {
        switch (math.order(lhs[i], rhs[i])) {
            .eq => continue,
            .lt => return .lt,
            .gt => return .gt,
        }
    }
    return math.order(lhs.len, rhs.len);
}

test "order" {
    try testing.expect(order(u8, "abcd", "bee") == .lt);
    try testing.expect(order(u8, "abc", "abc") == .eq);
    try testing.expect(order(u8, "abc", "abc0") == .lt);
    try testing.expect(order(u8, "", "") == .eq);
    try testing.expect(order(u8, "", "a") == .lt);
}

/// Returns true if lhs < rhs, false otherwise
pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool {
    return order(T, lhs, rhs) == .lt;
}

test "lessThan" {
    try testing.expect(lessThan(u8, "abcd", "bee"));
    try testing.expect(!lessThan(u8, "abc", "abc"));
    try testing.expect(lessThan(u8, "abc", "abc0"));
    try testing.expect(!lessThan(u8, "", ""));
    try testing.expect(lessThan(u8, "", "a"));
}

/// Compares two slices and returns whether they are equal.
pub fn eql(comptime T: type, a: []const T, b: []const T) bool {
    if (a.len != b.len) return false;
    if (a.ptr == b.ptr) return true;
    for (a, b) |a_elem, b_elem| {
        if (a_elem != b_elem) return false;
    }
    return true;
}

/// Compares two slices and returns the index of the first inequality.
/// Returns null if the slices are equal.
pub fn indexOfDiff(comptime T: type, a: []const T, b: []const T) ?usize {
    const shortest = math.min(a.len, b.len);
    if (a.ptr == b.ptr)
        return if (a.len == b.len) null else shortest;
    var index: usize = 0;
    while (index < shortest) : (index += 1) if (a[index] != b[index]) return index;
    return if (a.len == b.len) null else shortest;
}

test "indexOfDiff" {
    try testing.expectEqual(indexOfDiff(u8, "one", "one"), null);
    try testing.expectEqual(indexOfDiff(u8, "one two", "one"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one", "one two"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one twx", "one two"), 6);
    try testing.expectEqual(indexOfDiff(u8, "xne", "one"), 0);
}

/// Takes a sentinel-terminated pointer and returns a slice preserving pointer attributes.
/// `[*c]` pointers are assumed to be 0-terminated and assumed to not be allowzero.
fn Span(comptime T: type) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?Span(optional_info.child);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            switch (ptr_info.size) {
                .C => {
                    new_ptr_info.sentinel = &@as(ptr_info.child, 0);
                    new_ptr_info.is_allowzero = false;
                },
                .Many => if (ptr_info.sentinel == null) @compileError("invalid type given to std.mem.span: " ++ @typeName(T)),
                .One, .Slice => @compileError("invalid type given to std.mem.span: " ++ @typeName(T)),
            }
            new_ptr_info.size = .Slice;
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.span: " ++ @typeName(T));
}

test "Span" {
    try testing.expect(Span([*:1]u16) == [:1]u16);
    try testing.expect(Span(?[*:1]u16) == ?[:1]u16);
    try testing.expect(Span([*:1]const u8) == [:1]const u8);
    try testing.expect(Span(?[*:1]const u8) == ?[:1]const u8);
    try testing.expect(Span([*c]u16) == [:0]u16);
    try testing.expect(Span(?[*c]u16) == ?[:0]u16);
    try testing.expect(Span([*c]const u8) == [:0]const u8);
    try testing.expect(Span(?[*c]const u8) == ?[:0]const u8);
}

/// Takes a sentinel-terminated pointer and returns a slice, iterating over the
/// memory to find the sentinel and determine the length.
/// Ponter attributes such as const are preserved.
/// `[*c]` pointers are assumed to be non-null and 0-terminated.
pub fn span(ptr: anytype) Span(@TypeOf(ptr)) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        if (ptr) |non_null| {
            return span(non_null);
        } else {
            return null;
        }
    }
    const Result = Span(@TypeOf(ptr));
    const l = len(ptr);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @ptrCast(*align(1) const ptr_info.child, s_ptr).*;
        return ptr[0..l :s];
    } else {
        return ptr[0..l];
    }
}

test "span" {
    var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
    const ptr = @as([*:3]u16, array[0..2 :3]);
    try testing.expect(eql(u16, span(ptr), &[_]u16{ 1, 2 }));
    try testing.expectEqual(@as(?[:0]u16, null), span(@as(?[*:0]u16, null)));
}

/// Helper for the return type of sliceTo()
fn SliceTo(comptime T: type, comptime end: meta.Elem(T)) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?SliceTo(optional_info.child, end);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            new_ptr_info.size = .Slice;
            switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |array_info| {
                        new_ptr_info.child = array_info.child;
                        // The return type must only be sentinel terminated if we are guaranteed

                        // to find the value searched for, which is only the case if it matches

                        // the sentinel of the type passed.

                        if (array_info.sentinel) |sentinel_ptr| {
                            const sentinel = @ptrCast(*align(1) const array_info.child, sentinel_ptr).*;
                            if (end == sentinel) {
                                new_ptr_info.sentinel = &end;
                            } else {
                                new_ptr_info.sentinel = null;
                            }
                        }
                    },
                    else => {},
                },
                .Many, .Slice => {
                    // The return type must only be sentinel terminated if we are guaranteed

                    // to find the value searched for, which is only the case if it matches

                    // the sentinel of the type passed.

                    if (ptr_info.sentinel) |sentinel_ptr| {
                        const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                        if (end == sentinel) {
                            new_ptr_info.sentinel = &end;
                        } else {
                            new_ptr_info.sentinel = null;
                        }
                    }
                },
                .C => {
                    new_ptr_info.sentinel = &end;
                    // C pointers are always allowzero, but we don't want the return type to be.

                    assert(new_ptr_info.is_allowzero);
                    new_ptr_info.is_allowzero = false;
                },
            }
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(T));
}

/// Takes an array, a pointer to an array, a sentinel-terminated pointer, or a slice and
/// iterates searching for the first occurrence of `end`, returning the scanned slice.
/// If `end` is not found, the full length of the array/slice/sentinel terminated pointer is returned.
/// If the pointer type is sentinel terminated and `end` matches that terminator, the
/// resulting slice is also sentinel terminated.
/// Pointer properties such as mutability and alignment are preserved.
/// C pointers are assumed to be non-null.
pub fn sliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) SliceTo(@TypeOf(ptr), end) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        const non_null = ptr orelse return null;
        return sliceTo(non_null, end);
    }
    const Result = SliceTo(@TypeOf(ptr), end);
    const length = lenSliceTo(ptr, end);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @ptrCast(*align(1) const ptr_info.child, s_ptr).*;
        return ptr[0..length :s];
    } else {
        return ptr[0..length];
    }
}

test "sliceTo" {
    try testing.expectEqualSlices(u8, "aoeu", sliceTo("aoeu", 0));

    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, &array, sliceTo(&array, 0));
        try testing.expectEqualSlices(u16, array[0..3], sliceTo(array[0..3], 0));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(&array, 3));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(array[0..3], 3));

        const sentinel_ptr = @ptrCast([*:5]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_ptr, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_ptr, 99));

        const optional_sentinel_ptr = @ptrCast(?[*:5]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(optional_sentinel_ptr, 3).?);
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(optional_sentinel_ptr, 99).?);

        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(c_ptr, 3));

        const slice: []u16 = &array;
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(slice, 3));
        try testing.expectEqualSlices(u16, &array, sliceTo(slice, 99));

        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_slice, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, sentinel_array[0..2], sliceTo(&sentinel_array, 3));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 0));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 99));
    }

    try testing.expectEqual(@as(?[]u8, null), sliceTo(@as(?[]u8, null), 0));
}

/// Private helper for sliceTo(). If you want the length, use sliceTo(foo, x).len
fn lenSliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) usize {
    switch (@typeInfo(@TypeOf(ptr))) {
        .Pointer => |ptr_info| switch (ptr_info.size) {
            .One => switch (@typeInfo(ptr_info.child)) {
                .Array => |array_info| {
                    if (array_info.sentinel) |sentinel_ptr| {
                        const sentinel = @ptrCast(*align(1) const array_info.child, sentinel_ptr).*;
                        if (sentinel == end) {
                            return indexOfSentinel(array_info.child, end, ptr);
                        }
                    }
                    return indexOfScalar(array_info.child, ptr, end) orelse array_info.len;
                },
                else => {},
            },
            .Many => if (ptr_info.sentinel) |sentinel_ptr| {
                const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                // We may be looking for something other than the sentinel,

                // but iterating past the sentinel would be a bug so we need

                // to check for both.

                var i: usize = 0;
                while (ptr[i] != end and ptr[i] != sentinel) i += 1;
                return i;
            },
            .C => {
                assert(ptr != null);
                return indexOfSentinel(ptr_info.child, end, ptr);
            },
            .Slice => {
                if (ptr_info.sentinel) |sentinel_ptr| {
                    const sentinel = @ptrCast(*align(1) const ptr_info.child, sentinel_ptr).*;
                    if (sentinel == end) {
                        return indexOfSentinel(ptr_info.child, sentinel, ptr);
                    }
                }
                return indexOfScalar(ptr_info.child, ptr, end) orelse ptr.len;
            },
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(@TypeOf(ptr)));
}

test "lenSliceTo" {
    try testing.expect(lenSliceTo("aoeu", 0) == 4);

    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&array, 0));
        try testing.expectEqual(@as(usize, 3), lenSliceTo(array[0..3], 0));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&array, 3));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(array[0..3], 3));

        const sentinel_ptr = @ptrCast([*:5]u16, &array);
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_ptr, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_ptr, 99));

        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqual(@as(usize, 2), lenSliceTo(c_ptr, 3));

        const slice: []u16 = &array;
        try testing.expectEqual(@as(usize, 2), lenSliceTo(slice, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(slice, 99));

        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_slice, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&sentinel_array, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 0));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 99));
    }
}

/// Takes a sentinel-terminated pointer and iterates over the memory to find the
/// sentinel and determine the length.
/// `[*c]` pointers are assumed to be non-null and 0-terminated.
pub fn len(value: anytype) usize {
    switch (@typeInfo(@TypeOf(value))) {
        .Pointer => |info| switch (info.size) {
            .Many => {
                const sentinel_ptr = info.sentinel orelse
                    @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value)));
                const sentinel = @ptrCast(*align(1) const info.child, sentinel_ptr).*;
                return indexOfSentinel(info.child, sentinel, value);
            },
            .C => {
                assert(value != null);
                return indexOfSentinel(info.child, 0, value);
            },
            else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))),
        },
        else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))),
    }
}

test "len" {
    var array: [5]u16 = [_]u16{ 1, 2, 0, 4, 5 };
    const ptr = @as([*:4]u16, array[0..3 :4]);
    try testing.expect(len(ptr) == 3);
    const c_ptr = @as([*c]u16, ptr);
    try testing.expect(len(c_ptr) == 2);
}

pub fn indexOfSentinel(comptime Elem: type, comptime sentinel: Elem, ptr: [*:sentinel]const Elem) usize {
    var i: usize = 0;
    while (ptr[i] != sentinel) {
        i += 1;
    }
    return i;
}

/// Returns true if all elements in a slice are equal to the scalar value provided
pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool {
    for (slice) |item| {
        if (item != scalar) return false;
    }
    return true;
}

/// Remove a set of values from the beginning of a slice.
pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    return slice[begin..];
}

/// Remove a set of values from the end of a slice.
pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var end: usize = slice.len;
    while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[0..end];
}

/// Remove a set of values from the beginning and end of a slice.
pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    var end: usize = slice.len;
    while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[begin..end];
}

test "trim" {
    try testing.expectEqualSlices(u8, "foo\n ", trimLeft(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, " foo", trimRight(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, "foo", " \n"));
}

/// Linear search for the index of a scalar value inside a slice.
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    return indexOfScalarPos(T, slice, 0, value);
}

/// Linear search for the last index of a scalar value inside a slice.
pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        if (slice[i] == value) return i;
    }
    return null;
}

pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        if (slice[i] == value) return i;
    }
    return null;
}

pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    return indexOfAnyPos(T, slice, 0, values);
}

pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;
}

pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;
}

pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    return indexOfPos(T, haystack, 0, needle);
}

/// Find the index in a slice of a sub-slice, searching from the end backwards.
/// To start looking at a different index, slice the haystack first.
/// Consider using `lastIndexOf` instead of this, which will automatically use a
/// more sophisticated algorithm on larger inputs.
pub fn lastIndexOfLinear(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    var i: usize = haystack.len - needle.len;
    while (true) : (i -= 1) {
        if (mem.eql(T, haystack[i .. i + needle.len], needle)) return i;
        if (i == 0) return null;
    }
}

/// Consider using `indexOfPos` instead of this, which will automatically use a
/// more sophisticated algorithm on larger inputs.
pub fn indexOfPosLinear(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    var i: usize = start_index;
    const end = haystack.len - needle.len;
    while (i <= end) : (i += 1) {
        if (eql(T, haystack[i .. i + needle.len], needle)) return i;
    }
    return null;
}

fn boyerMooreHorspoolPreprocessReverse(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }

    var i: usize = pattern.len - 1;
    // The first item is intentionally ignored and the skip size will be pattern.len.

    // This is the standard way Boyer-Moore-Horspool is implemented.

    while (i > 0) : (i -= 1) {
        table[pattern[i]] = i;
    }
}

fn boyerMooreHorspoolPreprocess(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }

    var i: usize = 0;
    // The last item is intentionally ignored and the skip size will be pattern.len.

    // This is the standard way Boyer-Moore-Horspool is implemented.

    while (i < pattern.len - 1) : (i += 1) {
        table[pattern[i]] = pattern.len - 1 - i;
    }
}

/// Find the index in a slice of a sub-slice, searching from the end backwards.
/// To start looking at a different index, slice the haystack first.
/// Uses the Reverse Boyer-Moore-Horspool algorithm on large inputs;
/// `lastIndexOfLinear` on small inputs.
pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return haystack.len;

    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return lastIndexOfLinear(T, haystack, needle);

    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);

    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocessReverse(needle_bytes, skip_table[0..]);

    var i: usize = haystack_bytes.len - needle_bytes.len;
    while (true) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        const skip = skip_table[haystack_bytes[i]];
        if (skip > i) break;
        i -= skip;
    }

    return null;
}

/// Uses Boyer-Moore-Horspool algorithm on large inputs; `indexOfPosLinear` on small inputs.
pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return start_index;

    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return indexOfPosLinear(T, haystack, start_index, needle);

    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);

    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocess(needle_bytes, skip_table[0..]);

    var i: usize = start_index * @sizeOf(T);
    while (i <= haystack_bytes.len - needle_bytes.len) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        i += skip_table[haystack_bytes[i + needle_bytes.len - 1]];
    }

    return null;
}

test "indexOf" {
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);

    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten", "").? == 0);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten", "").? == 48);

    try testing.expect(indexOf(u8, "one two three four", "four").? == 14);
    try testing.expect(lastIndexOf(u8, "one two three two four", "two").? == 14);
    try testing.expect(indexOf(u8, "one two three four", "gour") == null);
    try testing.expect(lastIndexOf(u8, "one two three four", "gour") == null);
    try testing.expect(indexOf(u8, "foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo", "foo").? == 0);
    try testing.expect(indexOf(u8, "foo", "fool") == null);
    try testing.expect(lastIndexOf(u8, "foo", "lfoo") == null);
    try testing.expect(lastIndexOf(u8, "foo", "fool") == null);

    try testing.expect(indexOf(u8, "foo foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo foo", "foo").? == 4);
    try testing.expect(lastIndexOfAny(u8, "boo, cat", "abo").? == 6);
    try testing.expect(lastIndexOfScalar(u8, "boo", 'o').? == 2);
}

test "indexOf multibyte" {
    {
        // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm

        const haystack = [1]u16{0} ** 100 ++ [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff };
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needle), 100);

        // check for misaligned false positives (little and big endian)

        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleBE), null);
    }

    {
        // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm

        const haystack = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff } ++ [1]u16{0} ** 100;
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needle), 0);

        // check for misaligned false positives (little and big endian)

        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleBE), null);
    }
}

test "indexOfPos empty needle" {
    try testing.expectEqual(indexOfPos(u8, "abracadabra", 5, ""), 5);
}

/// Returns the number of needles inside the haystack
/// needle.len must be > 0
/// does not count overlapping needles
pub fn count(comptime T: type, haystack: []const T, needle: []const T) usize {
    assert(needle.len > 0);
    var i: usize = 0;
    var found: usize = 0;

    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
    }

    return found;
}

test "count" {
    try testing.expect(count(u8, "", "h") == 0);
    try testing.expect(count(u8, "h", "h") == 1);
    try testing.expect(count(u8, "hh", "h") == 2);
    try testing.expect(count(u8, "world!", "hello") == 0);
    try testing.expect(count(u8, "hello world!", "hello") == 1);
    try testing.expect(count(u8, "   abcabc   abc", "abc") == 3);
    try testing.expect(count(u8, "udexdcbvbruhasdrw", "bruh") == 1);
    try testing.expect(count(u8, "foo bar", "o bar") == 1);
    try testing.expect(count(u8, "foofoofoo", "foo") == 3);
    try testing.expect(count(u8, "fffffff", "ff") == 3);
    try testing.expect(count(u8, "owowowu", "owowu") == 1);
}

/// Returns true if the haystack contains expected_count or more needles
/// needle.len must be > 0
/// does not count overlapping needles
pub fn containsAtLeast(comptime T: type, haystack: []const T, expected_count: usize, needle: []const T) bool {
    assert(needle.len > 0);
    if (expected_count == 0) return true;

    var i: usize = 0;
    var found: usize = 0;

    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
        if (found == expected_count) return true;
    }
    return false;
}

test "containsAtLeast" {
    try testing.expect(containsAtLeast(u8, "aa", 0, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 1, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 2, "a"));
    try testing.expect(!containsAtLeast(u8, "aa", 3, "a"));

    try testing.expect(containsAtLeast(u8, "radaradar", 1, "radar"));
    try testing.expect(!containsAtLeast(u8, "radaradar", 2, "radar"));

    try testing.expect(containsAtLeast(u8, "radarradaradarradar", 3, "radar"));
    try testing.expect(!containsAtLeast(u8, "radarradaradarradar", 4, "radar"));

    try testing.expect(containsAtLeast(u8, "   radar      radar   ", 2, "radar"));
    try testing.expect(!containsAtLeast(u8, "   radar      radar   ", 3, "radar"));
}

/// Reads an integer from memory with size equal to bytes.len.
/// T specifies the return type, which must be large enough to store
/// the result.
pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: Endian) ReturnType {
    var result: ReturnType = 0;
    switch (endian) {
        .Big => {
            for (bytes) |b| {
                result = (result << 8) | b;
            }
        },
        .Little => {
            const ShiftType = math.Log2Int(ReturnType);
            for (bytes, 0..) |b, index| {
                result = result | (@as(ReturnType, b) << @intCast(ShiftType, index * 8));
            }
        },
    }
    return result;
}

/// Loads an integer from packed memory with provided bit_count, bit_offset, and signedness.
/// Asserts that T is large enough to store the read value.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     const b_field = readVarPackedInt(u64, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, builtin.cpu.arch.endian(), .unsigned);
///
pub fn readVarPackedInt(
    comptime T: type,
    bytes: []const u8,
    bit_offset: usize,
    bit_count: usize,
    endian: std.builtin.Endian,
    signedness: std.builtin.Signedness,
) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const iN = std.meta.Int(.signed, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const read_size = (bit_count + (bit_offset % 8) + 7) / 8;
    const bit_shift = @intCast(u3, bit_offset % 8);
    const pad = @intCast(Log2N, @bitSizeOf(T) - bit_count);

    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - read_size,
        .Little => bit_offset / 8,
    };
    const read_bytes = bytes[lowest_byte..][0..read_size];

    if (@bitSizeOf(T) <= 8) {
        // These are the same shifts/masks we perform below, but adds `@truncate`/`@intCast`

        // where needed since int is smaller than a byte.

        const value = if (read_size == 1) b: {
            break :b @truncate(uN, read_bytes[0] >> bit_shift);
        } else b: {
            const i: u1 = @boolToInt(endian == .Big);
            const head = @truncate(uN, read_bytes[i] >> bit_shift);
            const tail_shift = @intCast(Log2N, @as(u4, 8) - bit_shift);
            const tail = @truncate(uN, read_bytes[1 - i]);
            break :b (tail << tail_shift) | head;
        };
        switch (signedness) {
            .signed => return @intCast(T, (@bitCast(iN, value) << pad) >> pad),
            .unsigned => return @intCast(T, (@bitCast(uN, value) << pad) >> pad),
        }
    }

    // Copy the value out (respecting endianness), accounting for bit_shift

    var int: uN = 0;
    switch (endian) {
        .Big => {
            for (read_bytes[0 .. read_size - 1]) |elem| {
                int = elem | (int << 8);
            }
            int = (read_bytes[read_size - 1] >> bit_shift) | (int << (@as(u4, 8) - bit_shift));
        },
        .Little => {
            int = read_bytes[0] >> bit_shift;
            for (read_bytes[1..], 0..) |elem, i| {
                int |= (@as(uN, elem) << @intCast(Log2N, (8 * (i + 1) - bit_shift)));
            }
        },
    }
    switch (signedness) {
        .signed => return @intCast(T, (@bitCast(iN, int) << pad) >> pad),
        .unsigned => return @intCast(T, (@bitCast(uN, int) << pad) >> pad),
    }
}

/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntNative(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @ptrCast(*align(1) const T, bytes).*;
}

/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @byteSwap(readIntNative(T, bytes));
}

pub const readIntLittle = switch (native_endian) {
    .Little => readIntNative,
    .Big => readIntForeign,
};

pub const readIntBig = switch (native_endian) {
    .Little => readIntForeign,
    .Big => readIntNative,
};

/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readIntNative(T, bytes[0..n]);
}

/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntSliceForeign(comptime T: type, bytes: []const u8) T {
    return @byteSwap(readIntSliceNative(T, bytes));
}

pub const readIntSliceLittle = switch (native_endian) {
    .Little => readIntSliceNative,
    .Big => readIntSliceForeign,
};

pub const readIntSliceBig = switch (native_endian) {
    .Little => readIntSliceForeign,
    .Big => readIntSliceNative,
};

/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
pub fn readInt(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8, endian: Endian) T {
    if (endian == native_endian) {
        return readIntNative(T, bytes);
    } else {
        return readIntForeign(T, bytes);
    }
}

fn readPackedIntLittle(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);

    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @intCast(u3, (load_size * 8) - bit_count);
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);

    if (bit_count == 0)
        return 0;

    // Read by loading a LoadInt, and then follow it up with a 1-byte read

    // of the tail if bit_offset pushed us over a byte boundary.

    const read_bytes = bytes[bit_offset / 8 ..];
    const val = @truncate(uN, readIntLittle(LoadInt, read_bytes[0..load_size]) >> bit_shift);
    if (bit_shift > load_tail_bits) {
        const tail_bits = @intCast(Log2N, bit_shift - load_tail_bits);
        const tail_byte = read_bytes[load_size];
        const tail_truncated = if (bit_count < 8) @truncate(uN, tail_byte) else @as(uN, tail_byte);
        return @bitCast(T, val | (tail_truncated << (@truncate(Log2N, bit_count) -% tail_bits)));
    } else return @bitCast(T, val);
}

fn readPackedIntBig(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const byte_count = (@as(usize, bit_shift) + bit_count + 7) / 8;

    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @intCast(u3, (load_size * 8) - bit_count);
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);

    if (bit_count == 0)
        return 0;

    // Read by loading a LoadInt, and then follow it up with a 1-byte read

    // of the tail if bit_offset pushed us over a byte boundary.

    const end = bytes.len - (bit_offset / 8);
    const read_bytes = bytes[(end - byte_count)..end];
    const val = @truncate(uN, readIntBig(LoadInt, bytes[(end - load_size)..end][0..load_size]) >> bit_shift);
    if (bit_shift > load_tail_bits) {
        const tail_bits = @intCast(Log2N, bit_shift - load_tail_bits);
        const tail_byte = if (bit_count < 8) @truncate(uN, read_bytes[0]) else @as(uN, read_bytes[0]);
        return @bitCast(T, val | (tail_byte << (@truncate(Log2N, bit_count) -% tail_bits)));
    } else return @bitCast(T, val);
}

pub const readPackedIntNative = switch (native_endian) {
    .Little => readPackedIntLittle,
    .Big => readPackedIntBig,
};

pub const readPackedIntForeign = switch (native_endian) {
    .Little => readPackedIntBig,
    .Big => readPackedIntLittle,
};

/// Loads an integer from packed memory.
/// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     const b_field = readPackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), builtin.cpu.arch.endian());
///
pub fn readPackedInt(comptime T: type, bytes: []const u8, bit_offset: usize, endian: Endian) T {
    switch (endian) {
        .Little => return readPackedIntLittle(T, bytes, bit_offset),
        .Big => return readPackedIntBig(T, bytes, bit_offset),
    }
}

/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: Endian) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readInt(T, bytes[0..n], endian);
}

test "comptime read/write int" {
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntLittle(u16, &bytes, 0x1234);
        const result = readIntBig(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntBig(u16, &bytes, 0x1234);
        const result = readIntLittle(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
}

test "readIntBig and readIntLittle" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

    try testing.expect(readIntSliceBig(u0, &[_]u8{}) == 0x0);
    try testing.expect(readIntSliceLittle(u0, &[_]u8{}) == 0x0);

    try testing.expect(readIntSliceBig(u8, &[_]u8{0x32}) == 0x32);
    try testing.expect(readIntSliceLittle(u8, &[_]u8{0x12}) == 0x12);

    try testing.expect(readIntSliceBig(u16, &[_]u8{ 0x12, 0x34 }) == 0x1234);
    try testing.expect(readIntSliceLittle(u16, &[_]u8{ 0x12, 0x34 }) == 0x3412);

    try testing.expect(readIntSliceBig(u72, &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024);
    try testing.expect(readIntSliceLittle(u72, &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec);

    try testing.expect(readIntSliceBig(i8, &[_]u8{0xff}) == -1);
    try testing.expect(readIntSliceLittle(i8, &[_]u8{0xfe}) == -2);

    try testing.expect(readIntSliceBig(i16, &[_]u8{ 0xff, 0xfd }) == -3);
    try testing.expect(readIntSliceLittle(i16, &[_]u8{ 0xfc, 0xff }) == -4);
}

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, and
/// accepts any integer bit width.
/// This function stores in native endian, which means it is implemented as a simple
/// memory store.
pub fn writeIntNative(comptime T: type, buf: *[(@typeInfo(T).Int.bits + 7) / 8]u8, value: T) void {
    @ptrCast(*align(1) T, buf).* = value;
}

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
/// This function stores in foreign endian, which means it does a @byteSwap first.
pub fn writeIntForeign(comptime T: type, buf: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T) void {
    writeIntNative(T, buf, @byteSwap(value));
}

pub const writeIntLittle = switch (native_endian) {
    .Little => writeIntNative,
    .Big => writeIntForeign,
};

pub const writeIntBig = switch (native_endian) {
    .Little => writeIntForeign,
    .Big => writeIntNative,
};

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
pub fn writeInt(comptime T: type, buffer: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T, endian: Endian) void {
    if (endian == native_endian) {
        return writeIntNative(T, buffer, value);
    } else {
        return writeIntForeign(T, buffer, value);
    }
}

pub fn writePackedIntLittle(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);

    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @intCast(u3, (store_size * 8) - bit_count);
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);

    if (bit_count == 0)
        return;

    // Write by storing a StoreInt, and then follow it up with a 1-byte tail

    // if bit_offset pushed us over a byte boundary.

    const write_bytes = bytes[bit_offset / 8 ..];
    const head = write_bytes[0] & ((@as(u8, 1) << bit_shift) - 1);

    var write_value = (@as(StoreInt, @bitCast(uN, value)) << bit_shift) | @intCast(StoreInt, head);
    if (bit_shift > store_tail_bits) {
        const tail_len = @intCast(Log2N, bit_shift - store_tail_bits);
        write_bytes[store_size] &= ~((@as(u8, 1) << @intCast(u3, tail_len)) - 1);
        write_bytes[store_size] |= @intCast(u8, (@bitCast(uN, value) >> (@truncate(Log2N, bit_count) -% tail_len)));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[store_size - 1] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }

    writeIntLittle(StoreInt, write_bytes[0..store_size], write_value);
}

pub fn writePackedIntBig(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @intCast(u3, bit_offset % 8);
    const byte_count = (bit_shift + bit_count + 7) / 8;

    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @intCast(u3, (store_size * 8) - bit_count);
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);

    if (bit_count == 0)
        return;

    // Write by storing a StoreInt, and then follow it up with a 1-byte tail

    // if bit_offset pushed us over a byte boundary.

    const end = bytes.len - (bit_offset / 8);
    const write_bytes = bytes[(end - byte_count)..end];
    const head = write_bytes[byte_count - 1] & ((@as(u8, 1) << bit_shift) - 1);

    var write_value = (@as(StoreInt, @bitCast(uN, value)) << bit_shift) | @intCast(StoreInt, head);
    if (bit_shift > store_tail_bits) {
        const tail_len = @intCast(Log2N, bit_shift - store_tail_bits);
        write_bytes[0] &= ~((@as(u8, 1) << @intCast(u3, tail_len)) - 1);
        write_bytes[0] |= @intCast(u8, (@bitCast(uN, value) >> (@truncate(Log2N, bit_count) -% tail_len)));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[0] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }

    writeIntBig(StoreInt, write_bytes[(byte_count - store_size)..][0..store_size], write_value);
}

pub const writePackedIntNative = switch (native_endian) {
    .Little => writePackedIntLittle,
    .Big => writePackedIntBig,
};

pub const writePackedIntForeign = switch (native_endian) {
    .Little => writePackedIntBig,
    .Big => writePackedIntLittle,
};

/// Stores an integer to packed memory.
/// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     // st.b = 0x7f;
///     writePackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 0x7f, builtin.cpu.arch.endian());
///
pub fn writePackedInt(comptime T: type, bytes: []u8, bit_offset: usize, value: T, endian: Endian) void {
    switch (endian) {
        .Little => writePackedIntLittle(T, bytes, bit_offset, value),
        .Big => writePackedIntBig(T, bytes, bit_offset, value),
    }
}

/// Writes a twos-complement little-endian integer to memory.
/// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer after writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntLittle
/// instead.
pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));

    if (@typeInfo(T).Int.bits == 0) {
        return set(u8, buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        set(u8, buffer, 0);
        buffer[0] = @bitCast(u8, value);
        return;
    }
    // TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough

    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @bitCast(uint, value);
    for (buffer) |*b| {
        b.* = @truncate(u8, bits);
        bits >>= 8;
    }
}

/// Writes a twos-complement big-endian integer to memory.
/// Asserts that buffer.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer before writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntBig instead.
pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));

    if (@typeInfo(T).Int.bits == 0) {
        return set(u8, buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        set(u8, buffer, 0);
        buffer[buffer.len - 1] = @bitCast(u8, value);
        return;
    }

    // TODO I want to call writeIntBig here but comptime eval facilities aren't good enough

    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @bitCast(uint, value);
    var index: usize = buffer.len;
    while (index != 0) {
        index -= 1;
        buffer[index] = @truncate(u8, bits);
        bits >>= 8;
    }
}

pub const writeIntSliceNative = switch (native_endian) {
    .Little => writeIntSliceLittle,
    .Big => writeIntSliceBig,
};

pub const writeIntSliceForeign = switch (native_endian) {
    .Little => writeIntSliceBig,
    .Big => writeIntSliceLittle,
};

/// Writes a twos-complement integer to memory, with the specified endianness.
/// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be evenly divisible by 8.
/// Any extra bytes in buffer not part of the integer are set to zero, with
/// respect to endianness. To avoid the branch to check for extra buffer bytes,
/// use writeInt instead.
pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: Endian) void {
    comptime assert(@typeInfo(T).Int.bits % 8 == 0);
    return switch (endian) {
        .Little => writeIntSliceLittle(T, buffer, value),
        .Big => writeIntSliceBig(T, buffer, value),
    };
}

/// Stores an integer to packed memory with provided bit_count, bit_offset, and signedness.
/// If negative, the written value is sign-extended.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     // st.b = 0x7f;
///     var value: u64 = 0x7f;
///     writeVarPackedInt(std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, value, builtin.cpu.arch.endian());
///
pub fn writeVarPackedInt(bytes: []u8, bit_offset: usize, bit_count: usize, value: anytype, endian: std.builtin.Endian) void {
    const T = @TypeOf(value);
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_shift = @intCast(u3, bit_offset % 8);
    const write_size = (bit_count + bit_shift + 7) / 8;
    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - write_size,
        .Little => bit_offset / 8,
    };
    const write_bytes = bytes[lowest_byte..][0..write_size];

    if (write_size == 1) {
        // Single byte writes are handled specially, since we need to mask bits

        // on both ends of the byte.

        const mask = (@as(u8, 0xff) >> @intCast(u3, 8 - bit_count));
        const new_bits = @intCast(u8, @bitCast(uN, value) & mask) << bit_shift;
        write_bytes[0] = (write_bytes[0] & ~(mask << bit_shift)) | new_bits;
        return;
    }

    var remaining: T = value;

    // Iterate bytes forward for Little-endian, backward for Big-endian

    const delta: i2 = if (endian == .Big) -1 else 1;
    const start = if (endian == .Big) @intCast(isize, write_bytes.len - 1) else 0;

    var i: isize = start; // isize for signed index arithmetic


    // Write first byte, using a mask to protects bits preceding bit_offset

    const head_mask = @as(u8, 0xff) >> bit_shift;
    write_bytes[@intCast(usize, i)] &= ~(head_mask << bit_shift);
    write_bytes[@intCast(usize, i)] |= @intCast(u8, @bitCast(uN, remaining) & head_mask) << bit_shift;
    remaining >>= @intCast(Log2N, @as(u4, 8) - bit_shift);
    i += delta;

    // Write bytes[1..bytes.len - 1]

    if (@bitSizeOf(T) > 8) {
        const loop_end = start + delta * (@intCast(isize, write_size) - 1);
        while (i != loop_end) : (i += delta) {
            write_bytes[@intCast(usize, i)] = @truncate(u8, @bitCast(uN, remaining));
            remaining >>= 8;
        }
    }

    // Write last byte, using a mask to protect bits following bit_offset + bit_count

    const following_bits = -%@truncate(u3, bit_shift + bit_count);
    const tail_mask = (@as(u8, 0xff) << following_bits) >> following_bits;
    write_bytes[@intCast(usize, i)] &= ~tail_mask;
    write_bytes[@intCast(usize, i)] |= @intCast(u8, @bitCast(uN, remaining) & tail_mask);
}

test "writeIntBig and writeIntLittle" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

    var buf0: [0]u8 = undefined;
    var buf1: [1]u8 = undefined;
    var buf2: [2]u8 = undefined;
    var buf9: [9]u8 = undefined;

    writeIntBig(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));
    writeIntLittle(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));

    writeIntBig(u8, &buf1, 0x12);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x12}));
    writeIntLittle(u8, &buf1, 0x34);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x34}));

    writeIntBig(u16, &buf2, 0x1234);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x12, 0x34 }));
    writeIntLittle(u16, &buf2, 0x5678);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x78, 0x56 }));

    writeIntBig(u72, &buf9, 0x123456789abcdef024);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }));
    writeIntLittle(u72, &buf9, 0xfedcba9876543210ec);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }));

    writeIntBig(i8, &buf1, -1);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xff}));
    writeIntLittle(i8, &buf1, -2);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xfe}));

    writeIntBig(i16, &buf2, -3);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xff, 0xfd }));
    writeIntLittle(i16, &buf2, -4);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xfc, 0xff }));
}

/// Swap the byte order of all the members of the fields of a struct
/// (Changing their endianess)
pub fn byteSwapAllFields(comptime S: type, ptr: *S) void {
    if (@typeInfo(S) != .Struct) @compileError("byteSwapAllFields expects a struct as the first argument");
    inline for (std.meta.fields(S)) |f| {
        @field(ptr, f.name) = @byteSwap(@field(ptr, f.name));
    }
}

test "byteSwapAllFields" {
    const T = extern struct {
        f0: u8,
        f1: u16,
        f2: u32,
    };
    var s = T{
        .f0 = 0x12,
        .f1 = 0x1234,
        .f2 = 0x12345678,
    };
    byteSwapAllFields(T, &s);
    try std.testing.expectEqual(T{
        .f0 = 0x12,
        .f1 = 0x3412,
        .f2 = 0x78563412,
    }, s);
}

/// Returns an iterator that iterates over the slices of `buffer` that are not
/// any of the bytes in `delimiter_bytes`.
///
/// `tokenize(u8, "   abc def    ghi  ", " ")` will return slices
/// for "abc", "def", "ghi", null, in that order.
///
/// If `buffer` is empty, the iterator will return null.
/// If `delimiter_bytes` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `split` and `splitBackwards`.
pub fn tokenize(comptime T: type, buffer: []const T, delimiter_bytes: []const T) TokenIterator(T) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter_bytes = delimiter_bytes,
    };
}

test "tokenize" {
    var it = tokenize(u8, "   abc def   ghi  ", " ");
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.peek().?, "def"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);

    it = tokenize(u8, "..\\bob", "\\");
    try testing.expect(eql(u8, it.next().?, ".."));
    try testing.expect(eql(u8, "..", "..\\bob"[0..it.index]));
    try testing.expect(eql(u8, it.next().?, "bob"));
    try testing.expect(it.next() == null);

    it = tokenize(u8, "//a/b", "/");
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, "//a/b", "//a/b"[0..it.index]));
    try testing.expect(it.next() == null);

    it = tokenize(u8, "|", "|");
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    it = tokenize(u8, "", "|");
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    it = tokenize(u8, "hello", "");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);

    it = tokenize(u8, "hello", " ");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);

    var it16 = tokenize(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("hello")));
    try testing.expect(it16.next() == null);
}

test "tokenize (multibyte)" {
    var it = tokenize(u8, "a|b,c/d e", " /,|");
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.peek().?, "b"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, it.next().?, "c"));
    try testing.expect(eql(u8, it.next().?, "d"));
    try testing.expect(eql(u8, it.next().?, "e"));
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    var it16 = tokenize(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a|b,c/d e"),
        std.unicode.utf8ToUtf16LeStringLiteral(" /,|"),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e")));
    try testing.expect(it16.next() == null);
}

test "tokenize (reset)" {
    var it = tokenize(u8, "   abc def   ghi  ", " ");
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));

    it.reset();

    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);
}

/// Returns an iterator that iterates over the slices of `buffer` that
/// are separated by bytes in `delimiter`.
///
/// `split(u8, "abc|def||ghi", "|")` will return slices
/// for "abc", "def", "", "ghi", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
/// The delimiter length must not be zero.
///
/// See also: `tokenize` and `splitBackwards`.
pub fn split(comptime T: type, buffer: []const T, delimiter: []const T) SplitIterator(T) {
    assert(delimiter.len != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

test "split" {
    var it = split(u8, "abc|def||ghi", "|");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "abc");

    try testing.expectEqualSlices(u8, it.rest(), "def||ghi");
    try testing.expectEqualSlices(u8, it.next().?, "def");

    try testing.expectEqualSlices(u8, it.rest(), "|ghi");
    try testing.expectEqualSlices(u8, it.next().?, "");

    try testing.expectEqualSlices(u8, it.rest(), "ghi");
    try testing.expectEqualSlices(u8, it.next().?, "ghi");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    it = split(u8, "", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);

    it = split(u8, "|", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.next() == null);

    it = split(u8, "hello", " ");
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);

    var it16 = split(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}

test "split (multibyte)" {
    var it = split(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.first(), "a");
    try testing.expectEqualSlices(u8, it.rest(), "b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");
    try testing.expectEqualSlices(u8, it.next().?, "c");
    try testing.expectEqualSlices(u8, it.next().?, "d");
    try testing.expectEqualSlices(u8, it.next().?, "e");
    try testing.expect(it.next() == null);

    var it16 = split(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expect(it16.next() == null);
}

test "split (reset)" {
    var it = split(u8, "abc def ghi", " ");
    try testing.expect(eql(u8, it.first(), "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));

    it.reset();

    try testing.expect(eql(u8, it.first(), "abc"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);
}

/// Returns an iterator that iterates backwards over the slices of `buffer`
/// that are separated by bytes in `delimiter`.
///
/// `splitBackwards(u8, "abc|def||ghi", "|")` will return slices
/// for "ghi", "", "def", "abc", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
/// The delimiter length must not be zero.
///
/// See also: `tokenize` and `split`.
pub fn splitBackwards(comptime T: type, buffer: []const T, delimiter: []const T) SplitBackwardsIterator(T) {
    assert(delimiter.len != 0);
    return SplitBackwardsIterator(T){
        .index = buffer.len,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

test "splitBackwards" {
    var it = splitBackwards(u8, "abc|def||ghi", "|");
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "ghi");

    try testing.expectEqualSlices(u8, it.rest(), "abc|def|");
    try testing.expectEqualSlices(u8, it.next().?, "");

    try testing.expectEqualSlices(u8, it.rest(), "abc|def");
    try testing.expectEqualSlices(u8, it.next().?, "def");

    try testing.expectEqualSlices(u8, it.rest(), "abc");
    try testing.expectEqualSlices(u8, it.next().?, "abc");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    it = splitBackwards(u8, "", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);

    it = splitBackwards(u8, "|", "|");
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.next() == null);

    it = splitBackwards(u8, "hello", " ");
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);

    var it16 = splitBackwards(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        std.unicode.utf8ToUtf16LeStringLiteral(" "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}

test "splitBackwards (multibyte)" {
    var it = splitBackwards(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.first(), "e");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d");
    try testing.expectEqualSlices(u8, it.next().?, "d");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c");
    try testing.expectEqualSlices(u8, it.next().?, "c");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");

    try testing.expectEqualSlices(u8, it.rest(), "a");
    try testing.expectEqualSlices(u8, it.next().?, "a");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    var it16 = splitBackwards(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expect(it16.next() == null);
}

test "splitBackwards (reset)" {
    var it = splitBackwards(u8, "abc def ghi", " ");
    try testing.expect(eql(u8, it.first(), "ghi"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "abc"));

    it.reset();

    try testing.expect(eql(u8, it.first(), "ghi"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(it.next() == null);
}

/// Returns an iterator with a sliding window of slices for `buffer`.
/// The sliding window has length `size` and on every iteration moves
/// forward by `advance`.
///
/// Extract data for moving average with:
/// `window(u8, "abcdefg", 3, 1)` will return slices
/// "abc", "bcd", "cde", "def", "efg", null, in that order.
///
/// Chunk or split every N items with:
/// `window(u8, "abcdefg", 3, 3)` will return slices
/// "abc", "def", "g", null, in that order.
///
/// Pick every even index with:
/// `window(u8, "abcdefg", 1, 2)` will return slices
/// "a", "c", "e", "g" null, in that order.
///
/// The `size` and `advance` must be not be zero.
pub fn window(comptime T: type, buffer: []const T, size: usize, advance: usize) WindowIterator(T) {
    assert(size != 0);
    assert(advance != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .size = size,
        .advance = advance,
    };
}

test "window" {
    {
        // moving average size 3

        var it = window(u8, "abcdefg", 3, 1);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "bcd");
        try testing.expectEqualSlices(u8, it.next().?, "cde");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "efg");
        try testing.expectEqual(it.next(), null);

        // multibyte

        var it16 = window(u16, std.unicode.utf8ToUtf16LeStringLiteral("abcdefg"), 3, 1);
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("abc"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("bcd"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("cde"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("def"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("efg"));
        try testing.expectEqual(it16.next(), null);
    }

    {
        // chunk/split every 3

        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }

    {
        // pick even

        var it = window(u8, "abcdefg", 1, 2);
        try testing.expectEqualSlices(u8, it.next().?, "a");
        try testing.expectEqualSlices(u8, it.next().?, "c");
        try testing.expectEqualSlices(u8, it.next().?, "e");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }

    {
        // empty

        var it = window(u8, "", 1, 1);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 10, 1);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 1, 10);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 10, 10);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);
    }

    {
        // first

        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.first(), "abc");
        it.reset();
        try testing.expectEqualSlices(u8, it.next().?, "abc");
    }

    {
        // reset

        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);

        it.reset();
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }
}

pub fn WindowIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        size: usize,
        advance: usize,

        const Self = @This();

        /// Returns a slice of the first window. This never fails.
        /// Call this only to get the first window and then use `next` to get
        /// all subsequent windows.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == 0);
            return self.next().?;
        }

        /// Returns a slice of the next window, or null if window is at end.
        pub fn next(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const next_index = start + self.advance;
            const end = if (start + self.size < self.buffer.len and next_index < self.buffer.len) blk: {
                self.index = next_index;
                break :blk start + self.size;
            } else blk: {
                self.index = null;
                break :blk self.buffer.len;
            };

            return self.buffer[start..end];
        }

        /// Resets the iterator to the initial window.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
    };
}

pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle);
}

test "startsWith" {
    try testing.expect(startsWith(u8, "Bob", "Bo"));
    try testing.expect(!startsWith(u8, "Needle in haystack", "haystack"));
}

pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len ..], needle);
}

test "endsWith" {
    try testing.expect(endsWith(u8, "Needle in haystack", "haystack"));
    try testing.expect(!endsWith(u8, "Bob", "Bo"));
}

pub fn TokenIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        delimiter_bytes: []const T,
        index: usize,

        const Self = @This();

        /// Returns a slice of the current token, or null if tokenization is
        /// complete, and advances to the next token.
        pub fn next(self: *Self) ?[]const T {
            const result = self.peek() orelse return null;
            self.index += result.len;
            return result;
        }

        /// Returns a slice of the current token, or null if tokenization is
        /// complete. Does not advance to the next token.
        pub fn peek(self: *Self) ?[]const T {
            // move to beginning of token

            while (self.index < self.buffer.len and self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {}
            const start = self.index;
            if (start == self.buffer.len) {
                return null;
            }

            // move to end of token

            var end = start;
            while (end < self.buffer.len and !self.isSplitByte(self.buffer[end])) : (end += 1) {}

            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            // move to beginning of token

            var index: usize = self.index;
            while (index < self.buffer.len and self.isSplitByte(self.buffer[index])) : (index += 1) {}
            return self.buffer[index..];
        }

        /// Resets the iterator to the initial token.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }

        fn isSplitByte(self: Self, byte: T) bool {
            for (self.delimiter_bytes) |delimiter_byte| {
                if (byte == delimiter_byte) {
                    return true;
                }
            }
            return false;
        }
    };
}

pub fn SplitIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: []const T,

        const Self = @This();

        /// Returns a slice of the first field. This never fails.
        /// Call this only to get the first field and then use `next` to get all subsequent fields.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == 0);
            return self.next().?;
        }

        /// Returns a slice of the next field, or null if splitting is complete.
        pub fn next(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const end = if (indexOfPos(T, self.buffer, start, self.delimiter)) |delim_start| blk: {
                self.index = delim_start + self.delimiter.len;
                break :blk delim_start;
            } else blk: {
                self.index = null;
                break :blk self.buffer.len;
            };
            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            const end = self.buffer.len;
            const start = self.index orelse end;
            return self.buffer[start..end];
        }

        /// Resets the iterator to the initial slice.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
    };
}

pub fn SplitBackwardsIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: []const T,

        const Self = @This();

        /// Returns a slice of the first field. This never fails.
        /// Call this only to get the first field and then use `next` to get all subsequent fields.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == self.buffer.len);
            return self.next().?;
        }

        /// Returns a slice of the next field, or null if splitting is complete.
        pub fn next(self: *Self) ?[]const T {
            const end = self.index orelse return null;
            const start = if (lastIndexOf(T, self.buffer[0..end], self.delimiter)) |delim_start| blk: {
                self.index = delim_start;
                break :blk delim_start + self.delimiter.len;
            } else blk: {
                self.index = null;
                break :blk 0;
            };
            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            const end = self.index orelse 0;
            return self.buffer[0..end];
        }

        /// Resets the iterator to the initial slice.
        pub fn reset(self: *Self) void {
            self.index = self.buffer.len;
        }
    };
}

/// Naively combines a series of slices with a separator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn join(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![]u8 {
    return joinMaybeZ(allocator, separator, slices, false);
}

/// Naively combines a series of slices with a separator and null terminator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinZ(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![:0]u8 {
    const out = try joinMaybeZ(allocator, separator, slices, true);
    return out[0 .. out.len - 1 :0];
}

fn joinMaybeZ(allocator: Allocator, separator: []const u8, slices: []const []const u8, zero: bool) ![]u8 {
    if (slices.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};

    const total_len = blk: {
        var sum: usize = separator.len * (slices.len - 1);
        for (slices) |slice| sum += slice.len;
        if (zero) sum += 1;
        break :blk sum;
    };

    const buf = try allocator.alloc(u8, total_len);
    errdefer allocator.free(buf);

    copy(u8, buf, slices[0]);
    var buf_index: usize = slices[0].len;
    for (slices[1..]) |slice| {
        copy(u8, buf[buf_index..], separator);
        buf_index += separator.len;
        copy(u8, buf[buf_index..], slice);
        buf_index += slice.len;
    }

    if (zero) buf[buf.len - 1] = 0;

    // No need for shrink since buf is exactly the correct size.

    return buf;
}

test "join" {
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
    }
}

test "joinZ" {
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
        try testing.expectEqual(str[str.len], 0);
    }
}

/// Copies each T from slices into a new slice that exactly holds all the elements.
pub fn concat(allocator: Allocator, comptime T: type, slices: []const []const T) ![]T {
    return concatMaybeSentinel(allocator, T, slices, null);
}

/// Copies each T from slices into a new slice that exactly holds all the elements.
pub fn concatWithSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: T) ![:s]T {
    const ret = try concatMaybeSentinel(allocator, T, slices, s);
    return ret[0 .. ret.len - 1 :s];
}

/// Copies each T from slices into a new slice that exactly holds all the elements as well as the sentinel.
pub fn concatMaybeSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: ?T) ![]T {
    if (slices.len == 0) return if (s) |sentinel| try allocator.dupe(T, &[1]T{sentinel}) else &[0]T{};

    const total_len = blk: {
        var sum: usize = 0;
        for (slices) |slice| {
            sum += slice.len;
        }

        if (s) |_| {
            sum += 1;
        }

        break :blk sum;
    };

    const buf = try allocator.alloc(T, total_len);
    errdefer allocator.free(buf);

    var buf_index: usize = 0;
    for (slices) |slice| {
        copy(T, buf[buf_index..], slice);
        buf_index += slice.len;
    }

    if (s) |sentinel| {
        buf[buf.len - 1] = sentinel;
    }

    // No need for shrink since buf is exactly the correct size.

    return buf;
}

test "concat" {
    {
        const str = try concat(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "abcdefghi"));
    }
    {
        const str = try concat(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        });
        defer testing.allocator.free(str);
        try testing.expect(eql(u32, str, &[_]u32{ 0, 1, 2, 3, 4, 5 }));
    }
    {
        const str = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" }, 0);
        defer testing.allocator.free(str);
        try testing.expectEqualSentinel(u8, 0, str, "abcdefghi");
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{}, 0);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u8, 0, slice, &[_:0]u8{});
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        }, 2);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u32, 2, slice, &[_:2]u32{ 0, 1, 2, 3, 4, 5 });
    }
}

test "testStringEquality" {
    try testing.expect(eql(u8, "abcd", "abcd"));
    try testing.expect(!eql(u8, "abcdef", "abZdef"));
    try testing.expect(!eql(u8, "abcdefg", "abcdef"));
}

test "testReadInt" {
    try testReadIntImpl();
    comptime try testReadIntImpl();
}
fn testReadIntImpl() !void {
    {
        const bytes = [_]u8{
            0x12,
            0x34,
            0x56,
            0x78,
        };
        try testing.expect(readInt(u32, &bytes, Endian.Big) == 0x12345678);
        try testing.expect(readIntBig(u32, &bytes) == 0x12345678);
        try testing.expect(readIntBig(i32, &bytes) == 0x12345678);
        try testing.expect(readInt(u32, &bytes, Endian.Little) == 0x78563412);
        try testing.expect(readIntLittle(u32, &bytes) == 0x78563412);
        try testing.expect(readIntLittle(i32, &bytes) == 0x78563412);
    }
    {
        const buf = [_]u8{
            0x00,
            0x00,
            0x12,
            0x34,
        };
        const answer = readInt(u32, &buf, Endian.Big);
        try testing.expect(answer == 0x00001234);
    }
    {
        const buf = [_]u8{
            0x12,
            0x34,
            0x00,
            0x00,
        };
        const answer = readInt(u32, &buf, Endian.Little);
        try testing.expect(answer == 0x00003412);
    }
    {
        const bytes = [_]u8{
            0xff,
            0xfe,
        };
        try testing.expect(readIntBig(u16, &bytes) == 0xfffe);
        try testing.expect(readIntBig(i16, &bytes) == -0x0002);
        try testing.expect(readIntLittle(u16, &bytes) == 0xfeff);
        try testing.expect(readIntLittle(i16, &bytes) == -0x0101);
    }
}

test "writeIntSlice" {
    try testWriteIntImpl();
    comptime try testWriteIntImpl();
}
fn testWriteIntImpl() !void {
    var bytes: [8]u8 = undefined;

    writeIntSlice(u0, bytes[0..], 0, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(u0, bytes[0..], 0, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(u64, bytes[0..], 0x12345678CAFEBABE, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));

    writeIntSlice(u64, bytes[0..], 0xBEBAFECA78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));

    writeIntSlice(u32, bytes[0..], 0x12345678, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
        0x56,
        0x78,
    }));

    writeIntSlice(u32, bytes[0..], 0x78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
    }));

    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x34,
        0x12,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xCD,
        0xAB,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0xAB,
        0xCD,
    }));

    writeIntSlice(u8, bytes[0..], 0x12, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x12,
    }));

    writeIntSlice(u8, bytes[0..], 0x12, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(i8, bytes[0..], -1, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0xff,
    }));

    writeIntSlice(i8, bytes[0..], -1, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xff, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
}

/// Returns the smallest number in a slice. O(n).
/// `slice` must not be empty.
pub fn min(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = math.min(best, item);
    }
    return best;
}

test "min" {
    try testing.expectEqual(min(u8, "abcdefg"), 'a');
    try testing.expectEqual(min(u8, "bcdefga"), 'a');
    try testing.expectEqual(min(u8, "a"), 'a');
}

/// Returns the largest number in a slice. O(n).
/// `slice` must not be empty.
pub fn max(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = math.max(best, item);
    }
    return best;
}

test "max" {
    try testing.expectEqual(max(u8, "abcdefg"), 'g');
    try testing.expectEqual(max(u8, "gabcdef"), 'g');
    try testing.expectEqual(max(u8, "g"), 'g');
}

/// Finds the smallest and largest number in a slice. O(n).
/// Returns an anonymous struct with the fields `min` and `max`.
/// `slice` must not be empty.
pub fn minMax(comptime T: type, slice: []const T) struct { min: T, max: T } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    for (slice[1..]) |item| {
        minVal = math.min(minVal, item);
        maxVal = math.max(maxVal, item);
    }
    return .{ .min = minVal, .max = maxVal };
}

test "minMax" {
    try testing.expectEqual(minMax(u8, "abcdefg"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "bcdefga"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "a"), .{ .min = 'a', .max = 'a' });
}

/// Returns the index of the smallest number in a slice. O(n).
/// `slice` must not be empty.
pub fn indexOfMin(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item < best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}

test "indexOfMin" {
    try testing.expectEqual(indexOfMin(u8, "abcdefg"), 0);
    try testing.expectEqual(indexOfMin(u8, "bcdefga"), 6);
    try testing.expectEqual(indexOfMin(u8, "a"), 0);
}

/// Returns the index of the largest number in a slice. O(n).
/// `slice` must not be empty.
pub fn indexOfMax(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item > best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}

test "indexOfMax" {
    try testing.expectEqual(indexOfMax(u8, "abcdefg"), 6);
    try testing.expectEqual(indexOfMax(u8, "gabcdef"), 0);
    try testing.expectEqual(indexOfMax(u8, "a"), 0);
}

/// Finds the indices of the smallest and largest number in a slice. O(n).
/// Returns an anonymous struct with the fields `index_min` and `index_max`.
/// `slice` must not be empty.
pub fn indexOfMinMax(comptime T: type, slice: []const T) struct { index_min: usize, index_max: usize } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    var minIdx: usize = 0;
    var maxIdx: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item < minVal) {
            minVal = item;
            minIdx = i + 1;
        }
        if (item > maxVal) {
            maxVal = item;
            maxIdx = i + 1;
        }
    }
    return .{ .index_min = minIdx, .index_max = maxIdx };
}

test "indexOfMinMax" {
    try testing.expectEqual(indexOfMinMax(u8, "abcdefg"), .{ .index_min = 0, .index_max = 6 });
    try testing.expectEqual(indexOfMinMax(u8, "gabcdef"), .{ .index_min = 1, .index_max = 0 });
    try testing.expectEqual(indexOfMinMax(u8, "a"), .{ .index_min = 0, .index_max = 0 });
}

pub fn swap(comptime T: type, a: *T, b: *T) void {
    const tmp = a.*;
    a.* = b.*;
    b.* = tmp;
}

/// In-place order reversal of a slice
pub fn reverse(comptime T: type, items: []T) void {
    var i: usize = 0;
    const end = items.len / 2;
    while (i < end) : (i += 1) {
        swap(T, &items[i], &items[items.len - i - 1]);
    }
}

test "reverse" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    reverse(i32, arr[0..]);

    try testing.expect(eql(i32, &arr, &[_]i32{ 4, 2, 1, 3, 5 }));
}

fn ReverseIterator(comptime T: type) type {
    const Pointer = blk: {
        switch (@typeInfo(T)) {
            .Pointer => |ptr_info| switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |array_info| {
                        var new_ptr_info = ptr_info;
                        new_ptr_info.size = .Many;
                        new_ptr_info.child = array_info.child;
                        new_ptr_info.sentinel = array_info.sentinel;
                        break :blk @Type(.{ .Pointer = new_ptr_info });
                    },
                    else => {},
                },
                .Slice => {
                    var new_ptr_info = ptr_info;
                    new_ptr_info.size = .Many;
                    break :blk @Type(.{ .Pointer = new_ptr_info });
                },
                else => {},
            },
            else => {},
        }
        @compileError("expected slice or pointer to array, found '" ++ @typeName(T) ++ "'");
    };
    const Element = std.meta.Elem(Pointer);
    const ElementPointer = @TypeOf(&@as(Pointer, undefined)[0]);
    return struct {
        ptr: Pointer,
        index: usize,
        pub fn next(self: *@This()) ?Element {
            if (self.index == 0) return null;
            self.index -= 1;
            return self.ptr[self.index];
        }
        pub fn nextPtr(self: *@This()) ?ElementPointer {
            if (self.index == 0) return null;
            self.index -= 1;
            return &self.ptr[self.index];
        }
    };
}

/// Iterates over a slice in reverse.
pub fn reverseIterator(slice: anytype) ReverseIterator(@TypeOf(slice)) {
    const T = @TypeOf(slice);
    if (comptime trait.isPtrTo(.Array)(T)) {
        return .{ .ptr = slice, .index = slice.len };
    } else {
        comptime assert(trait.isSlice(T));
        return .{ .ptr = slice.ptr, .index = slice.len };
    }
}

test "reverseIterator" {
    {
        var it = reverseIterator("abc");
        try testing.expectEqual(@as(?u8, 'c'), it.next());
        try testing.expectEqual(@as(?u8, 'b'), it.next());
        try testing.expectEqual(@as(?u8, 'a'), it.next());
        try testing.expectEqual(@as(?u8, null), it.next());
    }
    {
        var array = [2]i32{ 3, 7 };
        const slice: []const i32 = &array;
        var it = reverseIterator(slice);
        try testing.expectEqual(@as(?i32, 7), it.next());
        try testing.expectEqual(@as(?i32, 3), it.next());
        try testing.expectEqual(@as(?i32, null), it.next());

        it = reverseIterator(slice);
        try testing.expect(trait.isConstPtr(@TypeOf(it.nextPtr().?)));
        try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*);
        try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*);
        try testing.expectEqual(@as(?*const i32, null), it.nextPtr());

        var mut_slice: []i32 = &array;
        var mut_it = reverseIterator(mut_slice);
        mut_it.nextPtr().?.* += 1;
        mut_it.nextPtr().?.* += 2;
        try testing.expectEqual([2]i32{ 5, 8 }, array);
    }
    {
        var array = [2]i32{ 3, 7 };
        const ptr_to_array: *const [2]i32 = &array;
        var it = reverseIterator(ptr_to_array);
        try testing.expectEqual(@as(?i32, 7), it.next());
        try testing.expectEqual(@as(?i32, 3), it.next());
        try testing.expectEqual(@as(?i32, null), it.next());

        it = reverseIterator(ptr_to_array);
        try testing.expect(trait.isConstPtr(@TypeOf(it.nextPtr().?)));
        try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*);
        try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*);
        try testing.expectEqual(@as(?*const i32, null), it.nextPtr());

        var mut_ptr_to_array: *[2]i32 = &array;
        var mut_it = reverseIterator(mut_ptr_to_array);
        mut_it.nextPtr().?.* += 1;
        mut_it.nextPtr().?.* += 2;
        try testing.expectEqual([2]i32{ 5, 8 }, array);
    }
}

/// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1)
/// Assumes 0 <= amount <= items.len
pub fn rotate(comptime T: type, items: []T, amount: usize) void {
    reverse(T, items[0..amount]);
    reverse(T, items[amount..]);
    reverse(T, items);
}

test "rotate" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    rotate(i32, arr[0..], 2);

    try testing.expect(eql(i32, &arr, &[_]i32{ 1, 2, 4, 5, 3 }));
}

/// Replace needle with replacement as many times as possible, writing to an output buffer which is assumed to be of
/// appropriate size. Use replacementSize to calculate an appropriate buffer size.
/// The needle must not be empty.
/// Returns the number of replacements made.
pub fn replace(comptime T: type, input: []const T, needle: []const T, replacement: []const T, output: []T) usize {
    // Empty needle will loop until output buffer overflows.

    assert(needle.len > 0);

    var i: usize = 0;
    var slide: usize = 0;
    var replacements: usize = 0;
    while (slide < input.len) {
        if (mem.startsWith(T, input[slide..], needle)) {
            mem.copy(T, output[i .. i + replacement.len], replacement);
            i += replacement.len;
            slide += needle.len;
            replacements += 1;
        } else {
            output[i] = input[slide];
            i += 1;
            slide += 1;
        }
    }

    return replacements;
}

test "replace" {
    var output: [29]u8 = undefined;
    var replacements = replace(u8, "All your base are belong to us", "base", "Zig", output[0..]);
    var expected: []const u8 = "All your Zig are belong to us";
    try testing.expect(replacements == 1);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    replacements = replace(u8, "Favor reading code over writing code.", "code", "", output[0..]);
    expected = "Favor reading  over writing .";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    // Empty needle is not allowed but input may be empty.

    replacements = replace(u8, "", "x", "y", output[0..0]);
    expected = "";
    try testing.expect(replacements == 0);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    // Adjacent replacements.


    replacements = replace(u8, "\\n\\n", "\\n", "\n", output[0..]);
    expected = "\n\n";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    replacements = replace(u8, "abbba", "b", "cd", output[0..]);
    expected = "acdcdcda";
    try testing.expect(replacements == 3);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
}

/// Replace all occurences of `needle` with `replacement`.
pub fn replaceScalar(comptime T: type, slice: []T, needle: T, replacement: T) void {
    for (slice, 0..) |e, i| {
        if (e == needle) {
            slice[i] = replacement;
        }
    }
}

/// Collapse consecutive duplicate elements into one entry.
pub fn collapseRepeatsLen(comptime T: type, slice: []T, elem: T) usize {
    if (slice.len == 0) return 0;
    var write_idx: usize = 1;
    var read_idx: usize = 1;
    while (read_idx < slice.len) : (read_idx += 1) {
        if (slice[read_idx - 1] != elem or slice[read_idx] != elem) {
            slice[write_idx] = slice[read_idx];
            write_idx += 1;
        }
    }
    return write_idx;
}

/// Collapse consecutive duplicate elements into one entry.
pub fn collapseRepeats(comptime T: type, slice: []T, elem: T) []T {
    return slice[0..collapseRepeatsLen(T, slice, elem)];
}

fn testCollapseRepeats(str: []const u8, elem: u8, expected: []const u8) !void {
    const mutable = try std.testing.allocator.dupe(u8, str);
    defer std.testing.allocator.free(mutable);
    try testing.expect(std.mem.eql(u8, collapseRepeats(u8, mutable, elem), expected));
}
test "collapseRepeats" {
    try testCollapseRepeats("", '/', "");
    try testCollapseRepeats("a", '/', "a");
    try testCollapseRepeats("/", '/', "/");
    try testCollapseRepeats("//", '/', "/");
    try testCollapseRepeats("/a", '/', "/a");
    try testCollapseRepeats("//a", '/', "/a");
    try testCollapseRepeats("a/", '/', "a/");
    try testCollapseRepeats("a//", '/', "a/");
    try testCollapseRepeats("a/a", '/', "a/a");
    try testCollapseRepeats("a//a", '/', "a/a");
    try testCollapseRepeats("//a///a////", '/', "/a/a/");
}

/// Calculate the size needed in an output buffer to perform a replacement.
/// The needle must not be empty.
pub fn replacementSize(comptime T: type, input: []const T, needle: []const T, replacement: []const T) usize {
    // Empty needle will loop forever.

    assert(needle.len > 0);

    var i: usize = 0;
    var size: usize = input.len;
    while (i < input.len) {
        if (mem.startsWith(T, input[i..], needle)) {
            size = size - needle.len + replacement.len;
            i += needle.len;
        } else {
            i += 1;
        }
    }

    return size;
}

test "replacementSize" {
    try testing.expect(replacementSize(u8, "All your base are belong to us", "base", "Zig") == 29);
    try testing.expect(replacementSize(u8, "Favor reading code over writing code.", "code", "") == 29);
    try testing.expect(replacementSize(u8, "Only one obvious way to do things.", "things.", "things in Zig.") == 41);

    // Empty needle is not allowed but input may be empty.

    try testing.expect(replacementSize(u8, "", "x", "y") == 0);

    // Adjacent replacements.

    try testing.expect(replacementSize(u8, "\\n\\n", "\\n", "\n") == 2);
    try testing.expect(replacementSize(u8, "abbba", "b", "cd") == 8);
}

/// Perform a replacement on an allocated buffer of pre-determined size. Caller must free returned memory.
pub fn replaceOwned(comptime T: type, allocator: Allocator, input: []const T, needle: []const T, replacement: []const T) Allocator.Error![]T {
    var output = try allocator.alloc(T, replacementSize(T, input, needle, replacement));
    _ = replace(T, input, needle, replacement, output);
    return output;
}

test "replaceOwned" {
    const gpa = std.testing.allocator;

    const base_replace = replaceOwned(u8, gpa, "All your base are belong to us", "base", "Zig") catch @panic("out of memory");
    defer gpa.free(base_replace);
    try testing.expect(eql(u8, base_replace, "All your Zig are belong to us"));

    const zen_replace = replaceOwned(u8, gpa, "Favor reading code over writing code.", " code", "") catch @panic("out of memory");
    defer gpa.free(zen_replace);
    try testing.expect(eql(u8, zen_replace, "Favor reading over writing."));
}

/// Converts a little-endian integer to host endianness.
pub fn littleToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}

/// Converts a big-endian integer to host endianness.
pub fn bigToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}

/// Converts an integer from specified endianness to host endianness.
pub fn toNative(comptime T: type, x: T, endianness_of_x: Endian) T {
    return switch (endianness_of_x) {
        .Little => littleToNative(T, x),
        .Big => bigToNative(T, x),
    };
}

/// Converts an integer which has host endianness to the desired endianness.
pub fn nativeTo(comptime T: type, x: T, desired_endianness: Endian) T {
    return switch (desired_endianness) {
        .Little => nativeToLittle(T, x),
        .Big => nativeToBig(T, x),
    };
}

/// Converts an integer which has host endianness to little endian.
pub fn nativeToLittle(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}

/// Converts an integer which has host endianness to big endian.
pub fn nativeToBig(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}

/// Returns the number of elements that, if added to the given pointer, align it
/// to a multiple of the given quantity, or `null` if one of the following
/// conditions is met:
/// - The aligned pointer would not fit the address space,
/// - The delta required to align the pointer is not a multiple of the pointee's
///   type.
pub fn alignPointerOffset(ptr: anytype, align_to: usize) ?usize {
    assert(isValidAlign(align_to));

    const T = @TypeOf(ptr);
    const info = @typeInfo(T);
    if (info != .Pointer or info.Pointer.size != .Many)
        @compileError("expected many item pointer, got " ++ @typeName(T));

    // Do nothing if the pointer is already well-aligned.

    if (align_to <= info.Pointer.alignment)
        return 0;

    // Calculate the aligned base address with an eye out for overflow.

    const addr = @ptrToInt(ptr);
    var ov = @addWithOverflow(addr, align_to - 1);
    if (ov[1] != 0) return null;
    ov[0] &= ~@as(usize, align_to - 1);

    // The delta is expressed in terms of bytes, turn it into a number of child

    // type elements.

    const delta = ov[0] - addr;
    const pointee_size = @sizeOf(info.Pointer.child);
    if (delta % pointee_size != 0) return null;
    return delta / pointee_size;
}

/// Aligns a given pointer value to a specified alignment factor.
/// Returns an aligned pointer or null if one of the following conditions is
/// met:
/// - The aligned pointer would not fit the address space,
/// - The delta required to align the pointer is not a multiple of the pointee's
///   type.
pub fn alignPointer(ptr: anytype, align_to: usize) ?@TypeOf(ptr) {
    const adjust_off = alignPointerOffset(ptr, align_to) orelse return null;
    const T = @TypeOf(ptr);
    // Avoid the use of intToPtr to avoid losing the pointer provenance info.

    return @alignCast(@typeInfo(T).Pointer.alignment, ptr + adjust_off);
}

test "alignPointer" {
    const S = struct {
        fn checkAlign(comptime T: type, base: usize, align_to: usize, expected: usize) !void {
            var ptr = @intToPtr(T, base);
            var aligned = alignPointer(ptr, align_to);
            try testing.expectEqual(expected, @ptrToInt(aligned));
        }
    };

    try S.checkAlign([*]u8, 0x123, 0x200, 0x200);
    try S.checkAlign([*]align(4) u8, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x4, 16, 0x10);
    // Misaligned.

    try S.checkAlign([*]align(1) u32, 0x3, 2, 0);
    // Overflow.

    try S.checkAlign([*]u32, math.maxInt(usize) - 3, 8, 0);
}

fn CopyPtrAttrs(
    comptime source: type,
    comptime size: std.builtin.Type.Pointer.Size,
    comptime child: type,
) type {
    const info = @typeInfo(source).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = size,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = info.alignment,
            .address_space = info.address_space,
            .child = child,
            .sentinel = null,
        },
    });
}

fn AsBytesReturnType(comptime P: type) type {
    if (!trait.isSingleItemPtr(P))
        @compileError("expected single item pointer, passed " ++ @typeName(P));

    const size = @sizeOf(meta.Child(P));

    return CopyPtrAttrs(P, .One, [size]u8);
}

/// Given a pointer to a single item, returns a slice of the underlying bytes, preserving pointer attributes.
pub fn asBytes(ptr: anytype) AsBytesReturnType(@TypeOf(ptr)) {
    const P = @TypeOf(ptr);
    const T = AsBytesReturnType(P);
    return @ptrCast(T, @alignCast(meta.alignment(T), ptr));
}

test "asBytes" {
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    try testing.expect(eql(u8, asBytes(&deadbeef), deadbeef_bytes));

    var codeface = @as(u32, 0xC0DEFACE);
    for (asBytes(&codeface)) |*b|
        b.* = 0;
    try testing.expect(codeface == 0);

    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };

    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    switch (native_endian) {
        .Little => {
            try testing.expect(eql(u8, asBytes(&inst), "\xBE\xEF\xDE\xA1"));
        },
        .Big => {
            try testing.expect(eql(u8, asBytes(&inst), "\xA1\xDE\xEF\xBE"));
        },
    }

    const ZST = struct {};
    const zero = ZST{};
    try testing.expect(eql(u8, asBytes(&zero), ""));
}

test "asBytes preserves pointer attributes" {
    const inArr: u32 align(16) = 0xDEADBEEF;
    const inPtr = @ptrCast(*align(16) const volatile u32, &inArr);
    const outSlice = asBytes(inPtr);

    const in = @typeInfo(@TypeOf(inPtr)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Given any value, returns a copy of its bytes in an array.
pub fn toBytes(value: anytype) [@sizeOf(@TypeOf(value))]u8 {
    return asBytes(&value).*;
}

test "toBytes" {
    var my_bytes = toBytes(@as(u32, 0x12345678));
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x12\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x78\x56\x34\x12")),
    }

    my_bytes[0] = '\x99';
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x99\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x99\x56\x34\x12")),
    }
}

fn BytesAsValueReturnType(comptime T: type, comptime B: type) type {
    const size = @as(usize, @sizeOf(T));

    if (comptime !trait.is(.Pointer)(B) or
        (meta.Child(B) != [size]u8 and meta.Child(B) != [size:0]u8))
    {
        @compileError(std.fmt.comptimePrint("expected *[{}]u8, passed " ++ @typeName(B), .{size}));
    }

    return CopyPtrAttrs(B, .One, T);
}

/// Given a pointer to an array of bytes, returns a pointer to a value of the specified type
/// backed by those bytes, preserving pointer attributes.
pub fn bytesAsValue(comptime T: type, bytes: anytype) BytesAsValueReturnType(T, @TypeOf(bytes)) {
    return @ptrCast(BytesAsValueReturnType(T, @TypeOf(bytes)), bytes);
}

test "bytesAsValue" {
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    try testing.expect(deadbeef == bytesAsValue(u32, deadbeef_bytes).*);

    var codeface_bytes: [4]u8 = switch (native_endian) {
        .Big => "\xC0\xDE\xFA\xCE",
        .Little => "\xCE\xFA\xDE\xC0",
    }.*;
    var codeface = bytesAsValue(u32, &codeface_bytes);
    try testing.expect(codeface.* == 0xC0DEFACE);
    codeface.* = 0;
    for (codeface_bytes) |b|
        try testing.expect(b == 0);

    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };

    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    const inst_bytes = switch (native_endian) {
        .Little => "\xBE\xEF\xDE\xA1",
        .Big => "\xA1\xDE\xEF\xBE",
    };
    const inst2 = bytesAsValue(S, inst_bytes);
    try testing.expect(meta.eql(inst, inst2.*));
}

test "bytesAsValue preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @ptrCast(*align(16) const volatile [4]u8, &inArr)[0..];
    const outPtr = bytesAsValue(u32, inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outPtr)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Given a pointer to an array of bytes, returns a value of the specified type backed by a
/// copy of those bytes.
pub fn bytesToValue(comptime T: type, bytes: anytype) T {
    return bytesAsValue(T, bytes).*;
}
test "bytesToValue" {
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    const deadbeef = bytesToValue(u32, deadbeef_bytes);
    try testing.expect(deadbeef == @as(u32, 0xDEADBEEF));
}

fn BytesAsSliceReturnType(comptime T: type, comptime bytesType: type) type {
    if (!(trait.isSlice(bytesType) or trait.isPtrTo(.Array)(bytesType)) or meta.Elem(bytesType) != u8) {
        @compileError("expected []u8 or *[_]u8, passed " ++ @typeName(bytesType));
    }

    if (trait.isPtrTo(.Array)(bytesType) and @typeInfo(meta.Child(bytesType)).Array.len % @sizeOf(T) != 0) {
        @compileError("number of bytes in " ++ @typeName(bytesType) ++ " is not divisible by size of " ++ @typeName(T));
    }

    return CopyPtrAttrs(bytesType, .Slice, T);
}

/// Given a slice of bytes, returns a slice of the specified type
/// backed by those bytes, preserving pointer attributes.
pub fn bytesAsSlice(comptime T: type, bytes: anytype) BytesAsSliceReturnType(T, @TypeOf(bytes)) {
    // let's not give an undefined pointer to @ptrCast

    // it may be equal to zero and fail a null check

    if (bytes.len == 0) {
        return &[0]T{};
    }

    const cast_target = CopyPtrAttrs(@TypeOf(bytes), .Many, T);

    return @ptrCast(cast_target, bytes)[0..@divExact(bytes.len, @sizeOf(T))];
}

test "bytesAsSlice" {
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        const slice = bytesAsSlice(u16, bytes[0..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        var runtime_zero: usize = 0;
        const slice = bytesAsSlice(u16, bytes[runtime_zero..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
}

test "bytesAsSlice keeps pointer alignment" {
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        const numbers = bytesAsSlice(u32, bytes[0..]);
        comptime try testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        var runtime_zero: usize = 0;
        const numbers = bytesAsSlice(u32, bytes[runtime_zero..]);
        comptime try testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
}

test "bytesAsSlice on a packed struct" {
    const F = packed struct {
        a: u8,
    };

    var b = [1]u8{9};
    var f = bytesAsSlice(F, &b);
    try testing.expect(f[0].a == 9);
}

test "bytesAsSlice with specified alignment" {
    var bytes align(4) = [_]u8{
        0x33,
        0x33,
        0x33,
        0x33,
    };
    const slice: []u32 = std.mem.bytesAsSlice(u32, bytes[0..]);
    try testing.expect(slice[0] == 0x33333333);
}

test "bytesAsSlice preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @ptrCast(*align(16) const volatile [4]u8, &inArr)[0..];
    const outSlice = bytesAsSlice(u16, inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

fn SliceAsBytesReturnType(comptime sliceType: type) type {
    if (!trait.isSlice(sliceType) and !trait.isPtrTo(.Array)(sliceType)) {
        @compileError("expected []T or *[_]T, passed " ++ @typeName(sliceType));
    }

    return CopyPtrAttrs(sliceType, .Slice, u8);
}

/// Given a slice, returns a slice of the underlying bytes, preserving pointer attributes.
pub fn sliceAsBytes(slice: anytype) SliceAsBytesReturnType(@TypeOf(slice)) {
    const Slice = @TypeOf(slice);

    // let's not give an undefined pointer to @ptrCast

    // it may be equal to zero and fail a null check

    if (slice.len == 0 and comptime meta.sentinel(Slice) == null) {
        return &[0]u8{};
    }

    const cast_target = CopyPtrAttrs(Slice, .Many, u8);

    return @ptrCast(cast_target, slice)[0 .. slice.len * @sizeOf(meta.Elem(Slice))];
}

test "sliceAsBytes" {
    const bytes = [_]u16{ 0xDEAD, 0xBEEF };
    const slice = sliceAsBytes(bytes[0..]);
    try testing.expect(slice.len == 4);
    try testing.expect(eql(u8, slice, switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xAD\xDE\xEF\xBE",
    }));
}

test "sliceAsBytes with sentinel slice" {
    const empty_string: [:0]const u8 = "";
    const bytes = sliceAsBytes(empty_string);
    try testing.expect(bytes.len == 0);
}

test "sliceAsBytes packed struct at runtime and comptime" {
    const Foo = packed struct {
        a: u4,
        b: u4,
    };
    const S = struct {
        fn doTheTest() !void {
            var foo: Foo = undefined;
            var slice = sliceAsBytes(@as(*[1]Foo, &foo)[0..1]);
            slice[0] = 0x13;
            try testing.expect(foo.a == 0x3);
            try testing.expect(foo.b == 0x1);
        }
    };
    try S.doTheTest();
    comptime try S.doTheTest();
}

test "sliceAsBytes and bytesAsSlice back" {
    try testing.expect(@sizeOf(i32) == 4);

    var big_thing_array = [_]i32{ 1, 2, 3, 4 };
    const big_thing_slice: []i32 = big_thing_array[0..];

    const bytes = sliceAsBytes(big_thing_slice);
    try testing.expect(bytes.len == 4 * 4);

    bytes[4] = 0;
    bytes[5] = 0;
    bytes[6] = 0;
    bytes[7] = 0;
    try testing.expect(big_thing_slice[1] == 0);

    const big_thing_again = bytesAsSlice(i32, bytes);
    try testing.expect(big_thing_again[2] == 3);

    big_thing_again[2] = -1;
    try testing.expect(bytes[8] == math.maxInt(u8));
    try testing.expect(bytes[9] == math.maxInt(u8));
    try testing.expect(bytes[10] == math.maxInt(u8));
    try testing.expect(bytes[11] == math.maxInt(u8));
}

test "sliceAsBytes preserves pointer attributes" {
    const inArr align(16) = [2]u16{ 0xDEAD, 0xBEEF };
    const inSlice = @ptrCast(*align(16) const volatile [2]u16, &inArr)[0..];
    const outSlice = sliceAsBytes(inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Round an address up to the next (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
/// Asserts that rounding up the address does not cause integer overflow.
pub fn alignForward(addr: usize, alignment: usize) usize {
    return alignForwardGeneric(usize, addr, alignment);
}

pub fn alignForwardLog2(addr: usize, log2_alignment: u8) usize {
    const alignment = @as(usize, 1) << @intCast(math.Log2Int(usize), log2_alignment);
    return alignForward(addr, alignment);
}

/// Round an address up to the next (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
/// Asserts that rounding up the address does not cause integer overflow.
pub fn alignForwardGeneric(comptime T: type, addr: T, alignment: T) T {
    assert(isValidAlignGeneric(T, alignment));
    return alignBackwardGeneric(T, addr + (alignment - 1), alignment);
}

/// Force an evaluation of the expression; this tries to prevent
/// the compiler from optimizing the computation away even if the
/// result eventually gets discarded.
// TODO: use @declareSideEffect() when it is available - https://github.com/ziglang/zig/issues/6168

pub fn doNotOptimizeAway(val: anytype) void {
    var a: u8 = 0;
    if (@typeInfo(@TypeOf(.{a})).Struct.fields[0].is_comptime) return;

    const max_gp_register_bits = @bitSizeOf(c_long);
    const t = @typeInfo(@TypeOf(val));
    switch (t) {
        .Void, .Null, .ComptimeInt, .ComptimeFloat => return,
        .Enum => doNotOptimizeAway(@enumToInt(val)),
        .Bool => doNotOptimizeAway(@boolToInt(val)),
        .Int => {
            const bits = t.Int.bits;
            if (bits <= max_gp_register_bits and builtin.zig_backend != .stage2_c) {
                const val2 = @as(
                    std.meta.Int(t.Int.signedness, @max(8, std.math.ceilPowerOfTwoAssert(u16, bits))),
                    val,
                );
                asm volatile (""
                    :
                    : [val2] "r" (val2),
                );
            } else doNotOptimizeAway(&val);
        },
        .Float => {
            if ((t.Float.bits == 32 or t.Float.bits == 64) and builtin.zig_backend != .stage2_c) {
                asm volatile (""
                    :
                    : [val] "rm" (val),
                );
            } else doNotOptimizeAway(&val);
        },
        .Pointer => {
            if (builtin.zig_backend == .stage2_c) {
                doNotOptimizeAwayC(val);
            } else {
                asm volatile (""
                    :
                    : [val] "m" (val),
                    : "memory"
                );
            }
        },
        .Array => {
            if (t.Array.len * @sizeOf(t.Array.child) <= 64) {
                for (val) |v| doNotOptimizeAway(v);
            } else doNotOptimizeAway(&val);
        },
        else => doNotOptimizeAway(&val),
    }
}

/// .stage2_c doesn't support asm blocks yet, so use volatile stores instead
var deopt_target: if (builtin.zig_backend == .stage2_c) u8 else void = undefined;
fn doNotOptimizeAwayC(ptr: anytype) void {
    const dest = @ptrCast(*volatile u8, &deopt_target);
    for (asBytes(ptr)) |b| {
        dest.* = b;
    }
    dest.* = 0;
}

test "doNotOptimizeAway" {
    comptime doNotOptimizeAway("test");

    doNotOptimizeAway(null);
    doNotOptimizeAway(true);
    doNotOptimizeAway(0);
    doNotOptimizeAway(0.0);
    doNotOptimizeAway(@as(u1, 0));
    doNotOptimizeAway(@as(u3, 0));
    doNotOptimizeAway(@as(u8, 0));
    doNotOptimizeAway(@as(u16, 0));
    doNotOptimizeAway(@as(u32, 0));
    doNotOptimizeAway(@as(u64, 0));
    doNotOptimizeAway(@as(u128, 0));
    doNotOptimizeAway(@as(u13, 0));
    doNotOptimizeAway(@as(u37, 0));
    doNotOptimizeAway(@as(u96, 0));
    doNotOptimizeAway(@as(u200, 0));
    doNotOptimizeAway(@as(f32, 0.0));
    doNotOptimizeAway(@as(f64, 0.0));
    doNotOptimizeAway([_]u8{0} ** 4);
    doNotOptimizeAway([_]u8{0} ** 100);
    doNotOptimizeAway(@as(std.builtin.Endian, .Little));
}

test "alignForward" {
    try testing.expect(alignForward(1, 1) == 1);
    try testing.expect(alignForward(2, 1) == 2);
    try testing.expect(alignForward(1, 2) == 2);
    try testing.expect(alignForward(2, 2) == 2);
    try testing.expect(alignForward(3, 2) == 4);
    try testing.expect(alignForward(4, 2) == 4);
    try testing.expect(alignForward(7, 8) == 8);
    try testing.expect(alignForward(8, 8) == 8);
    try testing.expect(alignForward(9, 8) == 16);
    try testing.expect(alignForward(15, 8) == 16);
    try testing.expect(alignForward(16, 8) == 16);
    try testing.expect(alignForward(17, 8) == 24);
}

/// Round an address down to the previous (or current) aligned address.
/// Unlike `alignBackward`, `alignment` can be any positive number, not just a power of 2.
pub fn alignBackwardAnyAlign(i: usize, alignment: usize) usize {
    if (isValidAlign(alignment))
        return alignBackward(i, alignment);
    assert(alignment != 0);
    return i - @mod(i, alignment);
}

/// Round an address down to the previous (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
pub fn alignBackward(addr: usize, alignment: usize) usize {
    return alignBackwardGeneric(usize, addr, alignment);
}

/// Round an address down to the previous (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
pub fn alignBackwardGeneric(comptime T: type, addr: T, alignment: T) T {
    assert(isValidAlignGeneric(T, alignment));
    // 000010000 // example alignment

    // 000001111 // subtract 1

    // 111110000 // binary not

    return addr & ~(alignment - 1);
}

/// Returns whether `alignment` is a valid alignment, meaning it is
/// a positive power of 2.
pub fn isValidAlign(alignment: usize) bool {
    return isValidAlignGeneric(usize, alignment);
}

/// Returns whether `alignment` is a valid alignment, meaning it is
/// a positive power of 2.
pub fn isValidAlignGeneric(comptime T: type, alignment: T) bool {
    return alignment > 0 and std.math.isPowerOfTwo(alignment);
}

pub fn isAlignedAnyAlign(i: usize, alignment: usize) bool {
    if (isValidAlign(alignment))
        return isAligned(i, alignment);
    assert(alignment != 0);
    return 0 == @mod(i, alignment);
}

pub fn isAlignedLog2(addr: usize, log2_alignment: u8) bool {
    return @ctz(addr) >= log2_alignment;
}

/// Given an address and an alignment, return true if the address is a multiple of the alignment
/// The alignment must be a power of 2 and greater than 0.
pub fn isAligned(addr: usize, alignment: usize) bool {
    return isAlignedGeneric(u64, addr, alignment);
}

pub fn isAlignedGeneric(comptime T: type, addr: T, alignment: T) bool {
    return alignBackwardGeneric(T, addr, alignment) == addr;
}

test "isAligned" {
    try testing.expect(isAligned(0, 4));
    try testing.expect(isAligned(1, 1));
    try testing.expect(isAligned(2, 1));
    try testing.expect(isAligned(2, 2));
    try testing.expect(!isAligned(2, 4));
    try testing.expect(isAligned(3, 1));
    try testing.expect(!isAligned(3, 2));
    try testing.expect(!isAligned(3, 4));
    try testing.expect(isAligned(4, 4));
    try testing.expect(isAligned(4, 2));
    try testing.expect(isAligned(4, 1));
    try testing.expect(!isAligned(4, 8));
    try testing.expect(!isAligned(4, 16));
}

test "freeing empty string with null-terminated sentinel" {
    const empty_string = try testing.allocator.dupeZ(u8, "");
    testing.allocator.free(empty_string);
}

/// Returns a slice with the given new alignment,
/// all other pointer attributes copied from `AttributeSource`.
fn AlignedSlice(comptime AttributeSource: type, comptime new_alignment: usize) type {
    const info = @typeInfo(AttributeSource).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = .Slice,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = new_alignment,
            .address_space = info.address_space,
            .child = info.child,
            .sentinel = null,
        },
    });
}

/// Returns the largest slice in the given bytes that conforms to the new alignment,
/// or `null` if the given bytes contain no conforming address.
pub fn alignInBytes(bytes: []u8, comptime new_alignment: usize) ?[]align(new_alignment) u8 {
    const begin_address = @ptrToInt(bytes.ptr);
    const end_address = begin_address + bytes.len;

    const begin_address_aligned = mem.alignForward(begin_address, new_alignment);
    const new_length = std.math.sub(usize, end_address, begin_address_aligned) catch |e| switch (e) {
        error.Overflow => return null,
    };
    const alignment_offset = begin_address_aligned - begin_address;
    return @alignCast(new_alignment, bytes[alignment_offset .. alignment_offset + new_length]);
}

/// Returns the largest sub-slice within the given slice that conforms to the new alignment,
/// or `null` if the given slice contains no conforming address.
pub fn alignInSlice(slice: anytype, comptime new_alignment: usize) ?AlignedSlice(@TypeOf(slice), new_alignment) {
    const bytes = sliceAsBytes(slice);
    const aligned_bytes = alignInBytes(bytes, new_alignment) orelse return null;

    const Element = @TypeOf(slice[0]);
    const slice_length_bytes = aligned_bytes.len - (aligned_bytes.len % @sizeOf(Element));
    const aligned_slice = bytesAsSlice(Element, aligned_bytes[0..slice_length_bytes]);
    return @alignCast(new_alignment, aligned_slice);
}

test "read/write(Var)PackedInt" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

    switch (builtin.cpu.arch) {
        // This test generates too much code to execute on WASI.

        // LLVM backend fails with "too many locals: locals exceed maximum"

        .wasm32, .wasm64 => return error.SkipZigTest,
        else => {},
    }

    const foreign_endian: Endian = if (native_endian == .Big) .Little else .Big;
    const expect = std.testing.expect;
    var prng = std.rand.DefaultPrng.init(1234);
    const random = prng.random();

    @setEvalBranchQuota(10_000);
    inline for ([_]type{ u8, u16, u32, u128 }) |BackingType| {
        for ([_]BackingType{
            @as(BackingType, 0), // all zeros

            -%@as(BackingType, 1), // all ones

            random.int(BackingType), // random

            random.int(BackingType), // random

            random.int(BackingType), // random

        }) |init_value| {
            const uTs = [_]type{ u1, u3, u7, u8, u9, u10, u15, u16, u86 };
            const iTs = [_]type{ i1, i3, i7, i8, i9, i10, i15, i16, i86 };
            inline for (uTs ++ iTs) |PackedType| {
                if (@bitSizeOf(PackedType) > @bitSizeOf(BackingType))
                    continue;

                const iPackedType = std.meta.Int(.signed, @bitSizeOf(PackedType));
                const uPackedType = std.meta.Int(.unsigned, @bitSizeOf(PackedType));
                const Log2T = std.math.Log2Int(BackingType);

                const offset_at_end = @bitSizeOf(BackingType) - @bitSizeOf(PackedType);
                for ([_]usize{ 0, 1, 7, 8, 9, 10, 15, 16, 86, offset_at_end }) |offset| {
                    if (offset > offset_at_end or offset == @bitSizeOf(BackingType))
                        continue;

                    for ([_]PackedType{
                        ~@as(PackedType, 0), // all ones: -1 iN / maxInt uN

                        @as(PackedType, 0), // all zeros: 0 iN / 0 uN

                        @bitCast(PackedType, @as(iPackedType, math.maxInt(iPackedType))), // maxInt iN

                        @bitCast(PackedType, @as(iPackedType, math.minInt(iPackedType))), // maxInt iN

                        random.int(PackedType), // random

                        random.int(PackedType), // random

                    }) |write_value| {
                        { // Fixed-size Read/Write (Native-endian)


                            // Initialize Value

                            var value: BackingType = init_value;

                            // Read

                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));

                            // Write

                            writePackedInt(PackedType, asBytes(&value), offset, write_value, native_endian);
                            try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));

                            // Read again

                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value2 == write_value);

                            // Verify bits outside of the target integer are unmodified

                            const diff_bits = init_value ^ value;
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                        }

                        { // Fixed-size Read/Write (Foreign-endian)


                            // Initialize Value

                            var value: BackingType = @byteSwap(init_value);

                            // Read

                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));

                            // Write

                            writePackedInt(PackedType, asBytes(&value), offset, write_value, foreign_endian);
                            try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));

                            // Read again

                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value2 == write_value);

                            // Verify bits outside of the target integer are unmodified

                            const diff_bits = init_value ^ @byteSwap(value);
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                        }

                        const signedness = @typeInfo(PackedType).Int.signedness;
                        const NextPowerOfTwoInt = std.meta.Int(signedness, comptime try std.math.ceilPowerOfTwo(u16, @bitSizeOf(PackedType)));
                        const ui64 = std.meta.Int(signedness, 64);
                        inline for ([_]type{ PackedType, NextPowerOfTwoInt, ui64 }) |U| {
                            { // Variable-size Read/Write (Native-endian)


                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;

                                // Initialize Value

                                var value: BackingType = init_value;

                                // Read

                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));

                                // Write

                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), native_endian);
                                try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, value >> @intCast(Log2T, offset))));

                                // Read again

                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value2 == write_value);

                                // Verify bits outside of the target integer are unmodified

                                const diff_bits = init_value ^ value;
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                            }

                            { // Variable-size Read/Write (Foreign-endian)


                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;

                                // Initialize Value

                                var value: BackingType = @byteSwap(init_value);

                                // Read

                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value1 == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));

                                // Write

                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), foreign_endian);
                                try expect(write_value == @bitCast(PackedType, @truncate(uPackedType, @byteSwap(value) >> @intCast(Log2T, offset))));

                                // Read again

                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value2 == write_value);

                                // Verify bits outside of the target integer are unmodified

                                const diff_bits = init_value ^ @byteSwap(value);
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @intCast(Log2T, offset + @bitSizeOf(PackedType)) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @intCast(Log2T, @bitSizeOf(BackingType) - offset) == 0);
                            }
                        }
                    }
                }
            }
        }
    }
}